Question	Answer	Marks	Guidance
1	${ }^{9} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{3} \times{ }^{2} \mathrm{C}_{2}$	$\mathbf{B 1}$	${ }^{9} \mathrm{C}_{4}$ or ${ }^{9} \mathrm{C}_{3}$ or ${ }^{9} \mathrm{C}_{2}$ seen (1st group)
	$=126 \times 10 \times 1$	$\mathbf{B 1}$	${ }^{5 \text { or } 7}{ }^{7} \mathrm{C}_{3}$ or ${ }^{6 \text { or } 7} \mathrm{C}_{4}$ or ${ }^{6 \text { or } 5} \mathrm{C}_{2}$ times an integer (2nd group)
	$=1260$	$\mathbf{B 1}$	Correct answer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$6 p+0.1=1$ $p=0.15$	$\mathbf{B 1}$	Correct answer
		$\mathbf{1}$	
	$\operatorname{Var}(X)=1 \times p+1 \times 2 p+4 \times 2 p+16 \times 0.1-1.15^{2}$	$\mathbf{M 1}$	Correct unsimplified formula, their p substituted (allow 1 error)
	$0.15+0+0.3+1.2+1.6-1.15^{2}$ $=1.9275=1.93(3 \mathrm{sf})$	Correct answer	
		$\mathbf{2}$	

Question		Answer	Marks	Guidance
3(i)	Scenarios are: $4 \mathrm{~V}+1 \mathrm{C}+1 \mathrm{DB}:$	${ }^{11} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{1} \times{ }^{4} \mathrm{C}_{1}$	M1	${ }^{11} \mathrm{C}_{\mathrm{a}} \times{ }^{5} \mathrm{C}_{\mathrm{b}} \times{ }^{4} \mathrm{C}_{\mathrm{c}}, a+b+c=6$,
	$\begin{aligned} & 4 V+2 C: \\ & 5 V+1 C: \end{aligned}$	$\begin{aligned} & { }^{11} \mathrm{C}_{4} \times{ }^{5} \mathrm{C}_{2} \\ & { }^{11} \mathrm{C}_{5} \times{ }^{5} \mathrm{C}_{1} \end{aligned}$	B1	2 correct unsimplified options
	$6600+3300+2310$		M1	Add 2 or 3 correct scenarios only
	$=12210$		A1	Correct answer
			4	
3(ii)	$4!\times 3!$		M1	k multiplied by 3 ! or 4!, k an integer $\geqslant 1$
			A1	Correct unsimplified expression
	$=144$		A1	Correct answer
			3	

Question	Answer	Marks	Guidance
4(a)	$\begin{aligned} & \mathrm{P}(X<29.4)=\mathrm{P}\left(Z<\frac{29.4-31.4}{\sqrt{3.6}}\right) \\ & =\mathrm{P}(Z<-1.0541) \end{aligned}$	M1	Standardise, no cc, must have sq rt.
	$=1-0.8540$	M1	Obtain 1 - prob
	$=0.146$	A1	Correct final answer
		3	

Question	Answer	Marks	Guidance
4(b)	$\mathrm{P}(X<12)=\frac{42}{400}=0.105 \text { and } \mathrm{P}(X>19)=\frac{58}{400}=0.145$	M1	Eqn with μ, σ and a z-value. Allow cc, wrong sign, but not $\sqrt{\sigma}$ or σ^{2}
	$\frac{12-\mu}{\sigma}=-1.253$	B1	Any form with z value rounding to ± 1.25
	$\frac{19-\mu}{\sigma}=1.058$	B1	Any form with z value rounding to ± 1.06
	$\begin{aligned} & 12-\mu=-1.253 \sigma \\ & 19-\mu=1.058 \sigma \\ & 7=2.307 \sigma \text { or } 36.455+2.307 \mu=0 \text { oe } \end{aligned}$	M1	Solve 2 equations in μ, σ eliminating to 1 unknown
	$\mu=15.8, \sigma=3.03$	A1	Correct answers
		5	

Question	Answer	Marks	Guidance
5(i)	$\begin{aligned} & 1-(\mathrm{P}(7)+\mathrm{P}(8)+\mathrm{P}(9)) \\ & =1-\left({ }^{9} \mathrm{C}_{7} 0.8^{7} \times 0.2^{2}+{ }^{9} \mathrm{C}_{8} 0.8^{8} \times 0.2^{1}+{ }^{9} \mathrm{C}_{9} 0.8^{9} \times 0.2^{0}\right) \end{aligned}$	M1	Any binomial term of form ${ }^{9} \mathrm{C}_{x} p^{x}(1-p)^{9-x}, x \neq 0$
		M1	Correct unsimplified expression
	$\begin{aligned} & =1-(0.3019899+0.3019899+0.1342177) \\ & =0.262 \end{aligned}$	A1	Correct answer
		3	

Question	Answer	Marks	Guidance
5(ii)	Mean $=200 \times 0.8=160:$ var $=200 \times 0.8 \times 0.2=32$	B1	Both unsimplified
	$\mathrm{P}(X>166)=\mathrm{P}\left(Z>\frac{166.5-160}{\sqrt{32}}\right)$	M1	Standardise, $z= \pm \frac{x-\text { their } 160}{\sqrt{\text { their } 32}}$ with square root
		M1	166.5 or 165.5 seen in attempted standardisation expression
	$=\mathrm{P}(Z>1.149)=1-0.8747$	M1	1 - a Φ-value, correct area expression, linked to final answer
	$=0.125$	A1	Correct final answer
		5	
5(iii)	$n p=160, n q=40:$ both >5 (so normal approx. holds)	B1	Both parts required
		1	

Question	Answer	Marks	Guidance
6(iii)	Frequencies 52, 42, 48, 30, 50, 28	B1	Correct frequencies
	Mean age $=$ $(10 \times 52+25 \times 42+35 \times 48+45 \times 30+60 \times 50+85 \times 28) / 250$	B1	Correct midpoints (allow one error)
	=9980/250	M1	Using $\Sigma \mathrm{fx} / 250$ with mid-points attempt, not cf , $\mathrm{cw}, \mathrm{lb}, \mathrm{ub}$
	$=39.9(2) \mathrm{oe}$	A1	Correct answer
	$\begin{aligned} & \text { Variance }= \\ & \begin{aligned} 10^{2} \times 52+ & \left.25^{2} \times 42+35^{2} \times 48+45^{2} \times 30+60^{2} \times 50+85^{2} \times 28\right) / 250- \\ \text { mean }^{2} & =539.59 \end{aligned} \end{aligned}$	M1	Attempt at variance using their midpoints and their mean
	$\sigma=23.2$	A1	Correct answer for sd
		6	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	$52 / 160=13 / 40,0.325$	B1	oe
		$\mathbf{1}$	
7 (ii)	$\mathrm{P}($ boy $)=96 / 160: \mathrm{P}(\mathrm{Music})=52 / 160$ $\mathrm{P}($ boy and Music $)=40 / 160$	$\mathbf{M 1}$	Use of $\mathrm{P}(\mathrm{B}) \times \mathrm{P}(\mathrm{M})=\mathrm{P}(\mathrm{B} \cap \mathrm{M})$, appropriate probabilities used
	$96 / 160 \times 52 / 160 \neq 40 / 160:$ Not independent	$\mathbf{A 1}$	Numerical comparison and conclusion stated
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
7(iii)	Method 1		
	$\begin{aligned} & \mathrm{P}(\text { not Music } / \text { girl })=\mathrm{P}(\text { not Music and girl }) / \mathrm{P}(\text { girl }) \\ & (27 / 160) /(64 / 160) \end{aligned}$	M1	Appropriate probabilities in a fraction
	$=\frac{27}{64}$	A1	Correct answer www implies method
	Method 2		
	Direct from table	M1	27/a or $b / 64, a \neq 160$
	$\frac{27}{64}$	A1	Correct answer www implies method
		2	
7(iv)	$\mathrm{P}(\mathrm{B} \mathrm{M}) \times \mathrm{P}(\mathrm{B} \mathrm{NM}) \times \mathrm{P}(\mathrm{G} \mathrm{NM})$ or $\mathrm{P}(\mathrm{G} \mathrm{M}) \times \mathrm{P}(\mathrm{B} \mathrm{NM}) \times \mathrm{P}(\mathrm{B} \mathrm{NM})$	M1	One scenario identified with 3 probs multiplied
	$40 / 160 \times 56 / 159 \times 52 / 158$ or $12 / 160 \times 56 / 159 \times 55 / 158$	A1	One scenario correct (ignore multiplying factor)
	$\times 3!\times 3!/ 2!$	B1	Both multiplying factors correct
	$\begin{array}{\|ll} 0.17387 & 0.02759 \\ \mathrm{P}=0.17387+0.02759 & \end{array}$	M1	Both cases attempted and added (multiplying factor not required), accept unsimplified
	$=0.201$ Note: If score in this part is 0 , award SCB1 for $\frac{1}{160} \times \frac{1}{159} \times \frac{1}{158} \times k$, for positive integer k, seen	A1	Correct answer, oe

Question	Answer	Marks	Guidance
7(iv)	Method 2		
	$\frac{\binom{40}{1} \times\binom{ 56}{1} \times\binom{ 52}{1}+\binom{12}{1} \times\binom{ 56}{2}}{\binom{160}{3}}$	M1	One scenario identified with 2 or 3 combination multiplied
		A1	One scenario correct
		B1	Denominator correct
	$\frac{116480+18480}{669920}$	M1	Both scenarios attempted, and added, seen as a numerator of a fraction
	$\frac{1687}{8374}$	A1	Correct answer, oe
		5	

