Question	Answer	Marks	Guidance
1	$v^{2}=25^{2}-(30 \cos 60)^{2}$	$\mathbf{M 1}$	$\mathrm{v}=$ vertical velocity at the required point
	$\mathrm{v}=(\pm) 20$	A1	
	$-20=30 \sin 60-\mathrm{gt}$	$\mathbf{M 1}$	Use $\mathrm{v}=\mathrm{u}+\mathrm{at}$ vertically
	$\mathrm{t}=4.6(0) \mathrm{s}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$\cos \theta=0.2 / 0.3$	$\mathbf{B 1}$	Axis makes an angle θ with the horizontal
	$\tan \theta=x / 0.3$	$\mathbf{M 1}$	
	$x=0.335(41 .)$.	$\mathbf{A 1}$	
		$\mathbf{3}$	$\mathbf{3}$
		$\mathbf{A 1}$	Attempt to take moments about A
	$\left(\pi 0.3^{2} \mathrm{~h} / 3\right) \times(\mathrm{h} / 4)=\left(2 \pi 0.2^{3} / 3\right)(3 \times 0.2 / 8)$	$\mathbf{A 1}$	
	$\mathrm{h}=0.231$	$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(i)	$20 \mathrm{e} / 0.5=0.4 \mathrm{~g}$	M1	Use $\mathrm{T}=\lambda x / \mathrm{L}$
	$\mathrm{e}=0.1$	A1	
	$0.4 v^{2} / 2=0.4 \mathrm{~g}(0.5+0.1)-20 \times 0.1^{2} /(2 \times 0.5)$	M1	Attempt to set up a 3 term energy equation
	$\mathrm{v}=\sqrt{11}=3.32$	A1	
		4	
3(ii)	$0.4 \mathrm{~g}(5+x)=20 x^{2} /(2 \times 0.5)$	M1	Attempt to set up a 2 term energy equation
	$\left[0=20 x^{2}-4 x-2\right][x=0.432]$	M1	Attempt to solve a 3 term quadratic equation
	Distance below $\mathrm{O}=(0.5+0.432)=0.932 \mathrm{~m}$	A1	
		3	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\mathrm{T}=16(1.6-0.8-x) / 0.8(=16-20 x)$	B1	Use $\mathrm{T}=\lambda x / \mathrm{L}$
	$0.5 v \mathrm{~d} v / \mathrm{d} x=16(1.6-0.8-x) / 0.8-48 x^{2}$	M1	Use Newton's Second Law horizontally
	$v \mathrm{~d} v / \mathrm{d} x=32-40 x-48 x^{2}$	AG	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(ii)	$48 x^{2}+40 x-32=0$	M1	Put acceleration $=0$ for maximum velocity
	$x=0.5$	A1	
	$\begin{aligned} & \int v d v=\int\left(32-40 x-48 x^{2}\right) \mathrm{d} x \\ & \left(v^{2} / 2=32 x-40 x^{2} / 2-48 x^{3} / 3+\mathrm{c}\right) \end{aligned}$	M1	Attempt to integrate the equation from part (i)
	$4.5^{2} / 2=32 \times 0.5-20 \times 0.5^{2}-16 \times 0.5^{3}+\mathrm{c}, \mathrm{c}=1.125$	M1	Substitute $x=0.5, v=4.5$ to find c
	$v=1.5$	A1	Use $x=0$
		5	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	$0.1 \times 1.5^{2} / 0.4=\mathrm{T} \cos \theta$	$\mathbf{M 1}$	Note $\mathrm{r}=0.4, \cos \theta=0.8, \sin \theta=0.6$ Use Newton's Second Law horizontally
	$\mathrm{T}=0.703$	$\mathbf{A 1}$	
	$\mathrm{R}=0.1 \mathrm{~g}-\mathrm{T} \sin \theta$	$\mathbf{M 1}$	Resolve vertically for P
	$\mathrm{R}=0.578$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	
$5(\mathrm{ii})$	$\mathrm{T}+\mathrm{T} \sin \theta=0.1 \mathrm{~g}$	$\mathbf{M 1}$	Resolve vertically for P
	$\mathrm{T}=0.625$	$\mathbf{A 1}$	
	$0.1 \omega^{2} \times 0.4=0.625 \cos \theta$	$\mathbf{M 1}$	Use Newton's Second Law horizontally
	$\omega=3.54 \mathrm{rad} s^{-1}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
6 (i)	Area of cross-section of prism $=0.5 \times 0.6-0.3 \times 0.3 / 2=0.375 \mathrm{~m}^{2}$	B1	Area of cross-section of prism = area of rectangle - area of triangle
	$0.375 y=0.42 \times 0.6 / 2-0.045(0.6-0.3 / 3)$	M1	Take moments about BC
	$\mathrm{y}=0.276 \mathrm{~m}$ (AG	A1	
	$0.375 x=0.42 \times 0.7 / 2-0.045(0.7-0.3 / 3)$	M1	Take moments about AB
	$x=0.32 \mathrm{~m}$	A1	
		5	
6(ii)		M1	Attempt to take moments about D
	$2 \cos 45 \times(0.7-0.32)=2 \cos 45 \times(0.3-0.276)+\mathrm{W}(0.3-0.276)$	A1	
	$\mathrm{W}=21(.0) \mathrm{N}$	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$x=(24 \cos 60) \mathrm{t}$	B1	Use horizontal motion
	$y=(24 \sin 60) t-\mathrm{g} t^{2} / 2$	B1	Use vertical motion
	$(24 \cos 60) t=(24 \sin 60) t-\mathrm{g} t^{2} / 2$	M1	Recognise that $x=y$
	$t=1.76$	A1	
		4	
7(ii)	$h=(24 \sin 60) t-\mathrm{g} t^{2} / 2-(24 \cos 60) t$	B1	
		M1	Attempt to differentiate
	$\mathrm{d} h / \mathrm{d} t=24(\sin 60-\cos 60)-\mathrm{g} t$	A1	
	$24(\sin 60-\cos 60)-\mathrm{g} t=0, t=0.878(46 .$.	M1	Equate $\mathrm{d} h / \mathrm{d} t=0$ to find t
	$h=3.86 \mathrm{~m}$	A1	
		5	

