Question	Answer	Marks	
1	$[T \sin 70+T \sin 45=0.2 g]$	M1	Resolving vertically
	$T=1.21 \mathrm{~N}(1.21447 \ldots)$	$\mathbf{A 1}$	
	$[P+T \cos 70=T \cos 45]$	$\mathbf{M 1}$	Resolving horizontally
	$P=0.443(0.443389 \ldots)$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	
2	$R=m g+50 \sin 20$	B1	
	$[F=0.3(m g+50 \sin 20)]$	M1	Use of $F=\mu R$
		M1	Resolving horizontally
	$50 \cos 20-0.3(m g+50 \sin 20)=0$	A1ft	ft $R(R$ containing term in $m)$
	$m=14.0 \mathrm{~kg}(13.9514 \ldots)$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
3(i)	$\left[1 / 2 \times 1.2 \times 7.5^{2}-1 / 2 \times 1.2 \times v^{2}=25\right]$	M1	For use of KE and 25 in a 3 term equation
	$v=3.82 \mathrm{~m} \mathrm{~s}^{-1}(3.81881 \ldots)$	A1	
		[2]	
3(ii)	$1.2 g d \sin 30$	B1	Correct expression for PE
	$\left[1 / 2 \times 1.2 \times 7.5^{2}-25+1.2 g d \sin 30=1 / 2 \times 1.2 \times 9^{2}\right]$	M1	For 4 term work / energy equation
	$d=6.64 \mathrm{~m}(6.64166 \ldots)$	A1	
		3	

Question	Answer	Marks	Guidance
4(i)		B1	Three correct straight lines
	$v=6 \mathrm{~m} \mathrm{~s}^{-1}, t=5 \mathrm{~s}$ and $t=17 \mathrm{~s}$	B1	Correct trapezium with key values
	$[1 / 2 \times 6 \times(12+20)]$ or $[1 / 2 \times 5 \times 6+12 \times 6+1 / 2 \times 3 \times 6]$	M1	Use of trapezium area or use of suvat formulae
	Total distance $=96 \mathrm{~m}$	A1	AG
		4	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$[1 / 2 \times 20 \times v=96]$	$\mathbf{M 1}$	Uses area of triangle $=96$ or uses $s=u t+1 / 2 ~ a t ~ t o ~ f o r m ~ e q u a t i o n ~ i n ~$
	$v=9.6 \mathrm{~m} \mathrm{~s}^{-1}$ or $48=1 / 2 a(10)^{2}$	$\mathbf{A 1}$	
	Acceleration $=9.6 / 10=0.96 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
5(i)	$[T-0.3 g=0.3 a$ or $0.5 g-T=0.5 a]$	M1	Use of Newton's second law for P or Q or use of $a=\left(m_{Q}-m_{P}\right) g /\left(m_{P}+m_{Q}\right)$
	$T-0.3 g=0.3 a$ and $0.5 g-T=0.5 a$ or $a=(0.5 g-0.3 g) /(0.5+0.3)$	A1	
	$[0.5 g-0.3 g=0.8 a]$	M1	Solve for a
	$a=2.5$	A1	
	$\left[h=0+1 / 2 \times 2.5 \times 0.6^{2}\right]$	M1	For use of $s=u t+1 / 2 a t^{2}$
	$h=0.45$	A1	
		6	

Question	Answer	Marks	
$5(\mathrm{ii})$	Velocity of P when Q reaches floor $=0+0.6 \times 2.5=1.5 \mathrm{~m} \mathrm{~s}^{-1}$	$\mathbf{B 1 f t}$	$\mathrm{ft} a$ from (i) $\times 0.6$
	$[0=1.5-g t \rightarrow t=\ldots](t=0.15)$	M1	Use of suvat to find time to highest point
	Total time $=2 \times 0.15+0.6=0.9 \mathrm{~s}$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(i)	Driving force $=36000 / 20$	B1	For use of power $=F v$
	[36000/20-R=3200 \times 0.2]	M1	Use of Newton's Second Law
	$R=1160 \mathrm{~N}$	A1	
		[3]	
6 (ii)	Driving force $F=3200 g \sin 1.5+1160$	M1	Resolving along plane
	$[$ Power $=(3200 g \sin 1.5+1160) \times 30]$	M1	Use of $P=F v$
	Power $=59900 \mathrm{~W}(59929.87 \ldots)$	A1	
		3	

Question	Answer	Marks	Guidance
6(iii)	$[-(3200 g \sin 1.5+1160)=3200 a]$	M1	Use of Newton's Second Law
	($a=-0.62426 \ldots$)	A1	
	$\left[0^{2}=30^{2}+2 \mathrm{as}\right]$	M1	Use of $v^{2}=u^{2}+2 a s$ to find s
	Distance $s=721 \mathrm{~m}(720.84 \ldots)$	A1	
		4	
	OR:		
6(iii)	[$3200 g \sin 1.5 s]$ or $[1 / 2 \times 3200 \times 900$]	M1	For PE gain or KE loss
	$3200 g \sin 1.5 s$ and $1 / 2 \times 3200 \times 900$	A1	For PE gain and KE loss
	$[1 / 2 \times 3200 \times 900=1160 s+3200 g \sin 1.5 s]$	M1	For work / energy equation
	Distance $s=721 \mathrm{~m}(720.84 \ldots)$	A1	
		4	

Question	Answer	Marks	
$7(\mathrm{i})$	Acceleration $=0$ when $t=5$ from $25-t^{2}=0$	B1	
	$\left[v=25 t-1 / 3 t^{3}\right]$	M1	Use of integration
	$\left[\right.$ Max speed $\left.=25 \times 5-1 / 3 \times 5^{3}\right]$	M1	Substitution for t
	Max speed $=831 / 3 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(ii)	$\left[s=121 / 2 t^{2}-1 / 12 t^{4}\right]$	M1	Use of integration
	Distance $=260 \mathrm{~m}(260.4166 \ldots)$	A1	
		2	
7(iii)	At $t=9, v=25 \times 9-1 / 3 \times 9^{3}=-18$	B1ft	$\mathrm{ft} v$ from (i)
	$\left[s=\int_{9}^{25}\left(-3 t^{-\frac{1}{2}}\right) d t=\left[-6 t^{\frac{1}{2}}\right]\right]$	M1	Use of integration
	[Change in velocity from $t=9$ to $t=25=\left[-6 t^{\frac{1}{2}}\right]=-6 \times 5+6 \times 3=-12$]	M1	Substituting limits
	Velocity at $t=25$ is $-18-12=-30 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	
	OR:		
7(iii)	At $t=9, v=25 \times 9-\frac{1}{3} \times 9^{3}=-18$	B1ft	$\mathrm{ft} v$ from (i)
	$\left[s=\int-3 t^{-1 / 2} d t=-6 t^{1 / 2}(+C)\right]$	M1	Use of integration
	$\left[t=9, v=-18 \rightarrow C=0, t=25, v=-6 \times 25^{1 / 2}\right]$	M1	Finds C and substitutes $t=25$
	Velocity at $t=25$ is $-30 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

