Cambridge International AS/A Level – Mark Scheme PUBLISHED

	PUBLISH		9709_w18_ms_4
Question	Answer	Marks	Guidance
1	$[T\sin 70 + T\sin 45 = 0.2g]$	M1	Resolving vertically
	T = 1.21 N (1.21447)	A1	
	$[P + T\cos 70 = T\cos 45]$	M1	Resolving horizontally
	$P = 0.443 \ (0.443389)$	A1	
		4	

Question	Answer	Marks	Guidance
2	$R = mg + 50\sin 20$	B1	
	$[F = 0.3(mg + 50\sin 20)]$	M1	Use of $F = \mu R$
		M1	Resolving horizontally
	$50\cos 20 - 0.3(mg + 50\sin 20) = 0$	A1ft	ft R (R containing term in m)
	$m = 14.0 \mathrm{kg} (13.9514)$	A1	
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

9709_w18_ms_43

Question	Answer	Marks	Guidance
3(i)	$[\frac{1}{2} \times 1.2 \times 7.5^2 - \frac{1}{2} \times 1.2 \times v^2 = 25]$	M1	For use of KE and 25 in a 3 term equation
	$v = 3.82 \text{ m s}^{-1} (3.81881)$	A1	
		[2]	
3(ii)	1.2gdsin30	B1	Correct expression for PE
	$[\frac{1}{2} \times 1.2 \times 7.5^2 - 25 + 1.2gd\sin 30 = \frac{1}{2} \times 1.2 \times 9^2]$	M1	For 4 term work / energy equation
	d = 6.64 m (6.64166)	A1	
		3	

Question	Answer	Marks	Guidance
4(i)		B1	Three correct straight lines
	$v = 6 \text{ m s}^{-1}$, $t = 5 \text{ s and } t = 17 \text{ s}$	B1	Correct trapezium with key values
	$[\frac{1}{2} \times 6 \times (12 + 20)]$ or $[\frac{1}{2} \times 5 \times 6 + 12 \times 6 + \frac{1}{2} \times 3 \times 6]$	M1	Use of trapezium area or use of suvat formulae
	Total distance = 96 m	A1	AG
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709_w18_ms_43

Question	Answer	Marks	Guidance
4(ii)	$[\frac{1}{2} \times 20 \times v = 96]$	M1	Uses area of triangle = 96 or uses $s = ut + \frac{1}{2} at^2$ to form equation in a
	$v = 9.6 \text{ m s}^{-1} \text{ or } 48 = \frac{1}{2} a (10)^2$	A1	
	Acceleration = $9.6 / 10 = 0.96 \text{ m s}^{-2}$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	[T - 0.3g = 0.3a or 0.5g - T = 0.5a]	M1	Use of Newton's second law for <i>P</i> or <i>Q</i> or use of $a = (m_Q - m_P)g / (m_P + m_Q)$
	T - 0.3g = 0.3a and $0.5g - T = 0.5a$ or $a = (0.5g - 0.3g) / (0.5 + 0.3)$	A1	
	[0.5g - 0.3g = 0.8a]	M1	Solve for <i>a</i>
	a = 2.5	A1	
	$[h = 0 + \frac{1}{2} \times 2.5 \times 0.6^2]$	M1	For use of $s = ut + \frac{1}{2}at^2$
	h = 0.45	A1	
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

	PUBLISHED		9709_w18_ms_43
Question	Answer	Marks	Guidance
5(ii)	Velocity of P when Q reaches floor = $0 + 0.6 \times 2.5 = 1.5 \text{ m s}^{-1}$	B1ft	ft <i>a</i> from (i) × 0.6
	$[0 = 1.5 - gt \to t = \dots] (t = 0.15)$	M1	Use of <i>suvat</i> to find time to highest point
	Total time = $2 \times 0.15 + 0.6 = 0.9$ s	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Driving force = 36000 / 20	B1	For use of power = Fv
	$[36000 / 20 - R = 3200 \times 0.2]$	M1	Use of Newton's Second Law
	R = 1160 N	A1	
		[3]	
6(ii)	Driving force $F = 3200gsin1.5 + 1160$	M1	Resolving along plane
	$[Power = (3200gsin1.5 + 1160) \times 30]$	M1	Use of $P = Fv$
	Power = 59900 W (59929.87)	A1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

9709	9 w1	. 8	ms	43

Question	Answer	Marks	Guidance
6(iii)	[-(3200gsin1.5 + 1160) = 3200a]	M1	Use of Newton's Second Law
	(a = -0.62426)	A1	
	$[0^2 = 30^2 + 2as]$	M1	Use of $v^2 = u^2 + 2as$ to find s
	Distance $s = 721 \text{ m} (720.84)$	A1	
		4	
	OR:		
6(iii)	$[3200gsin1.5s]$ or $[\frac{1}{2} \times 3200 \times 900]$	M1	For PE gain or KE loss
	$3200gsin1.5s$ and $\frac{1}{2} \times 3200 \times 900$	A1	For PE gain and KE loss
	$[\frac{1}{2} \times 3200 \times 900 = 1160s + 3200gsin1.5s]$	M1	For work / energy equation
	Distance $s = 721 \text{ m} (720.84)$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	Acceleration = 0 when $t = 5$ from $25 - t^2 = 0$	B1	
	$[v = 25t - \frac{1}{3}t^3]$	M1	Use of integration
	$[Max speed = 25 \times 5 - \frac{1}{3} \times 5^3]$	M1	Substitution for <i>t</i>
	Max speed = $83\frac{1}{3}$ m s ⁻¹	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

9709 w18 ms 43

Question	Answer	Marks	Guidance
7(ii)	$[s = 12^{1/2}t^2 - {^1/_{12}t^4}]$	M1	Use of integration
	Distance = 260 m (260.4166)	A1	
		2	
7(iii)	At $t = 9$, $v = 25 \times 9 - \frac{1}{3} \times 9^3 = -18$	B1ft	ft v from (i)
	$\left[s = \int_{9}^{25} \left(-3t^{-\frac{1}{2}}\right) dt = \left[-6t^{\frac{1}{2}}\right]\right]$	M1	Use of integration
	[Change in velocity from $t = 9$ to $t = 25 = \left[-6t^{\frac{1}{2}}\right] = -6 \times 5 + 6 \times 3 = -12$]	M1	Substituting limits
	Velocity at $t = 25$ is $-18 - 12 = -30$ m s ⁻¹	A1	
		4	
	OR:		
7(iii)	At $t = 9$, $v = 25 \times 9 - \frac{1}{3} \times 9^3 = -18$	B1ft	ft <i>v</i> from (i)
	$[s = \int -3t^{-\frac{1}{2}} dt = -6t^{\frac{1}{2}} (+C)]$	M1	Use of integration
	$[t = 9, v = -18 \rightarrow C = 0, t = 25, v = -6 \times 25^{\frac{1}{2}}]$	M1	Finds <i>C</i> and substitutes $t = 25$
	Velocity at $t = 25$ is -30 m s ⁻¹	A1	
		4	