		9709_wia		
Question	Answer	Marks	Guidance	
1	$[T\cos 45 + T\cos 45 = 2.5\cos 45]$	M1	For resolving horizontally	
	T = 1.25 N	A1		
	$[2.5 \sin 45 = mg]$	M1	For resolving vertically	
	Mass of ring = 0.177 kg	A1	Allow $m = \sqrt{2/8}$	
	First alternative method for Q1			
	$[2.5 = T + mg\cos 45]$	M1	Resolve forces along BR	
	$[T = mg\cos 45]$	M1	Resolve forces perpendicular to BR and eliminate <i>T</i> or <i>m</i>	
	T = 1.25 N	A1		
	Mass of ring = 0.177 kg	A1	Allow $m = \sqrt{2/8}$	
	Second alternative method for Q1			
	or $\frac{2T\cos 45}{\sin 135} = \frac{2.5}{\sin 90} = \frac{mg}{\sin 135}$ $\frac{2.5 - T}{\sin 135} = \frac{T}{\sin 135} = \frac{mg}{\sin 90}$	M1	Attempt to apply Lami's theorem,	
		M1	All three terms of Lami attempted	
	T = 1.25 N	A1		
	Mass of ring = 0.177 kg	A1	Allow $m = \sqrt{2/8}$	
		4		

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
2	$R = 5g\cos 6$	B1	
	$[F = 0.3 \times 5g \cos 6]$	M1	Use of $F = \mu R$
	$[T = 5g\sin 6 + F]$	M1	For resolving along the plane
	T = 20.1 N (20.14425)	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
3(i)	Acceleration = -1 m s^{-2}	B1	Allow deceleration = 1 m s^{-2}
		1	
3(ii)	[V/4 = 1 or (V+2)/6 = 1]	M1	Use of gradient of line between $t = 4$ and $t = 10$ or use of similar triangles to find <i>V</i>
	<i>V</i> = 4	A1	
		2	
3(iii)	[Distance = Area = $\frac{1}{2}(6+2) \times 2 = 8$]	M1	Attempt distance travelled in first 6 seconds
	Distance $AB = 3 \times 8 = 24$ m	A1	
	$[\frac{1}{2} \times (T-6) \times 4 = 24]$	M1	Attempt to find the distance travelled from $t = 6$ to $t = T$ and set up an equation for T
	T = 18	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(i)	T = 0.7g	B1	
	$R = 0.4g \times \frac{4}{5} [= \frac{16}{5} = 3.2]$	B1	Normal reaction on particle P
	$[X + 0.4g \times {}^{3}/_{5} - F - T = 0]$	M1	Attempt to resolve forces along the plane
	<i>X</i> = 6.2	A1	AG
		4	
4(ii)	$\begin{bmatrix} 0.7g - T = 0.7a \end{bmatrix}$ [T - 0.8 - 0.4g × ³ / ₅ - F = 0.4a] [0.7g - 0.8 - 0.4g × ³ / ₅ - F = (0.7 + 0.4)a] System	M1	For using Newton's 2nd law for both particle P and particle Q or the system equation
		A1	Both equations correct or system equation correct
		M1	Solve either the system equation or solve two simultaneous equations to find a
	$a = 2 \text{ m s}^{-2}$	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$[1.2T^{1/2} - 0.6T = 0]$	M1	Attempt to find time of maximum <i>v</i> , set $a = 0$ and solve for <i>T</i>
	$T^{1/2} = 2 \longrightarrow T = 4$	A1	
		2	
5(ii)	$[da/dt = 0.6t^{1/2} - 0.6]$	M1	Attempt to differentiate a
	<i>t</i> = 1	A1	Solve $da/dt = 0$ and find t
	$[v = 0.8t^{3/2} - 0.3t^2 (+ C)]$	M1	Attempt to integrate <i>a</i> to find <i>v</i>
		A1	Correct integration
	[C=1]	M1	Use $v = 1$ at $t = 0$ either finding C or by using limits as $v(1) - v(0) = [0.8(1)^{3/2} - 0.3(1)^2] - [0.8(0)^{3/2} - 0.3(0)^2]$
	Velocity when acceleration is max is 1.5 ms ⁻¹	A1	<i>v</i> = 1.5
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

		<u> </u>	
Question	Answer	Marks	Guidance
6(i)	Power = $350 \times 15 = 5250$ W	B1	Allow 5.25 kW
		1	
6(ii)		B1	Using Driving force $DF = P/15$
	$DF + 1200g \sin 1 - 350 = 1200 \times 0.12$	M1	For using Newton's 2nd law down the slope
	P = 4270 W (4268.56)	A1	
		3	
6(iii)	$[1200g \sin 1 - 350 = 1200a]$	M1	Using Newton's 2nd law down the slope
		A1	Correct equation
	$[18^2 = 20^2 + 2as]$	M1	Using constant acceleration formulae with a complete method to find distance, <i>s</i> , travelled.
	Distance travelled $s = 324 \text{ m} (324.39)$	A1	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(iii)	Alternative method for Q6(iii)		
	PE loss = $1200g \times s \sin 1$ KE loss = $\frac{1}{2} \times 1200 \times (20^2 - 18^2)$	M1	Attempt either PE loss or KE loss
		A1	Both PE loss and KE loss correct
	$[1200g \times s \sin 1 + \frac{1}{2} \times 1200 \times (20^2 - 18^2) = 350s]$	M1	Apply work-energy equation to the car
	Distance travelled $s = 324 \text{ m} (324.39)$	A1	
		4	

October/November 2018

Question	Answer	Marks	Guidance
7(i)	At liquid surface, speed = $0 + g \times 0.8$ [= 8] or	B1	Using constant acceleration equation $v = u + at$ or
	$0.3g \times \frac{1}{2} (0+v) \times 0.8 = \frac{1}{2} (0.3) v^2 \rightarrow v = 8$	D1	PE loss = KE gain
	PE lost in water = $0.3g \times 1.25$ [= 3.75]	B1	
	$[\frac{1}{2} \times 0.3 \times (8^2 - v^2) + 0.3g \times 1.25 = 1.2]$	M1	Using work-energy for downward motion in the tank PE loss + KE loss = Work done against resistance
	$v = 9 \text{ m s}^{-1}$	A1	
	Alternative method for Q7(i)		
	Height above tank = $\frac{1}{2} \times g \times 0.8^2$ [= 3.2]	B1	
	Total PE loss = $0.3g \times (3.2 + 1.25)$ [= 13.35]	B1	
	$[0.3g \times (3.2 + 1.25) = \frac{1}{2} \times 0.3 \times v^2 + 1.2]$	M1	Work-energy equation for the total downward motion
	$v = 9 \text{ m s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
7(ii)	[-0.3g - 1.8 = 0.3a]	M1	Using Newton's 2nd law for the upward motion in the tank
	a = -16	A1	
	$[1.25 = 7T + \frac{1}{2} \times (-16) \times T^2]$	M1	Using constant acceleration equations to find the time, T , for the particle to travel from the bottom to the surface of the liquid
	T = 0.25 (or 0.625, on the way down)	A1	
	[v at surface = $7 + (-16) \times 0.25 = 3$]	B1	Using $v = u + aT$ or equivalent to find v at surface
	$[0=3-gt \to t=0.3]$	M1	Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time = $T + t = 0.55$ s	A1	

Question	Answer	Marks	Guidance
7(ii)	Alternative method for Q7(ii)		
	[-0.3g - 1.8 = 0.3a]	M1	Using Newton's 2nd law for the upward motion in the tank
	a = -16	A1	
	$v^2 = 7^2 + 2 \times (-16) \times 1.25 = 9 \rightarrow v = 3$	B1	Using constant acceleration equations to find v at the surface
	$1.25 = \frac{1}{2} (7+3) \times T$ or 3 = 7 + (-16) × T	M1	Using $s = \frac{1}{2}(u + v) \times T$ or $v = u + aT$ to find the time, <i>T</i> , for the particle to travel from the bottom to the surface of the liquid
	T = 0.25	A1	
	$[0=3-gt \to t=0.3]$	M1	Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time = $T + t = 0.55$ s	A1	

October/November 2018

Question	Answer	Marks	Guidance
7(ii)	Second Alternative method for Q7(ii)		
	$[\frac{1}{2} \times 0.3 \times (7^2 - v^2) = 0.3g \times 1.25 + 1.8 \times 1.25]$	M1	Work-energy equation for motion from bottom to surface
		A1	Correct equation
	<i>v</i> = 3	B1	Find v at surface from rearrangement of work-energy
	$[1.25 = \frac{1}{2}(7+3) \times T]$	M1	Using $s = \frac{1}{2}(u + v) \times T$ to find the time <i>T</i> , for the particle to travel from the bottom to the surface of the liquid
	T = 0.25	A1	
	$[0 = 3 - 10t \to t = 0.3]$	M1	Attempt to find the time, <i>t</i> , taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time = $T + t = 0.55$ s	A1	
		7	