Question	Answer	Marks	Guidance
1	$[T \cos 45+T \cos 45=2.5 \cos 45]$	M1	For resolving horizontally
	$T=1.25 \mathrm{~N}$	A1	
	$[2.5 \sin 45=m g]$	M1	For resolving vertically
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
	First alternative method for Q1		
	[2.5 $=T+m g \cos 45]$	M1	Resolve forces along BR
	[$T=m g \cos 45]$	M1	Resolve forces perpendicular to BR and eliminate T or m
	$T=1.25 \mathrm{~N}$	A1	
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
	Second alternative method for Q1		
	$\frac{2 T \cos 45}{\sin 135}=\frac{2.5}{\sin 90}=\frac{m g}{\sin 135}$ or $\frac{2.5-T}{\sin 135}=\frac{T}{\sin 135}=\frac{m g}{\sin 90}$	M1	Attempt to apply Lami's theorem,
		M1	All three terms of Lami attempted
	$T=1.25 \mathrm{~N}$	A1	
	Mass of ring $=0.177 \mathrm{~kg}$	A1	Allow $m=\sqrt{ } 2 / 8$
		4	

Question	Answer	Marks	
	$R=5 g \cos 6$	B1	
	$[F=0.3 \times 5 g \cos 6]$	M1	Use of $F=\mu R$
	$[T=5 g \sin 6+F]$	$\mathbf{M 1}$	For resolving along the plane
	$T=20.1 \mathrm{~N}(20.14425 \ldots)$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3(i)	Acceleration $=-1 \mathrm{~m} \mathrm{~s}^{-2}$	B1	Allow deceleration $=1 \mathrm{~m} \mathrm{~s}^{-2}$
		1	
3(ii)	$[V / 4=1$ or $(V+2) / 6=1]$	M1	Use of gradient of line between $t=4$ and $t=10$ or use of similar triangles to find V
	$V=4$	A1	
		2	
3(iii)	$[$ Distance $=$ Area $=1 / 2(6+2) \times 2=8]$	M1	Attempt distance travelled in first 6 seconds
	Distance $A B=3 \times 8=24 \mathrm{~m}$	A1	
	$[1 / 2 \times(T-6) \times 4=24]$	M1	Attempt to find the distance travelled from $t=6$ to $t=T$ and set up an equation for T
	$T=18$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$T=0.7 \mathrm{~g}$	B1	
	$R=0.4 g \times 4 / 5[=16 / 5=3.2]$	B1	Normal reaction on particle P
	$[X+0.4 g \times 3 / 5-F-T=0]$	M1	Attempt to resolve forces along the plane
	$X=6.2$	A1	AG
		4	
4(ii)	$\begin{aligned} & {[0.7 g-T=0.7 a]} \\ & {[T-0.8-0.4 g \times 3 / 5-F=0.4 a]} \\ & {[0.7 g-0.8-0.4 g \times 3 / 5-F=(0.7+0.4) a] \text { System }} \end{aligned}$	M1	For using Newton's 2nd law for both particle P and particle Q or the system equation
		A1	Both equations correct or system equation correct
		M1	Solve either the system equation or solve two simultaneous equations to find a
	$a=2 \mathrm{~ms}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	$\left[1.2 T^{1 / 2}-0.6 T=0\right]$	M1	Attempt to find time of maximum v, set $a=0$ and solve for T
	$T^{1 / 2}=2 \rightarrow T=4$	A1	
		2	
5(ii)	$\left[\mathrm{d} a / \mathrm{d} t=0.6 t^{1 / 2}-0.6\right]$	M1	Attempt to differentiate a
	$t=1$	A1	Solve $\mathrm{d} a / \mathrm{d} t=0$ and find t
	$\left[v=0.8 t^{3 / 2}-0.3 t^{2}(+C)\right]$	M1	Attempt to integrate a to find v
		A1	Correct integration
	[C=1]	M1	Use $v=1$ at $t=0$ either finding C or by using limits as $v(1)-v(0)=\left[0.8(1)^{3 / 2}-0.3(1)^{2}\right]-\left[0.8(0)^{3 / 2}-0.3(0)^{2}\right]$
	Velocity when acceleration is max is $1.5 \mathrm{~ms}^{-1}$	A1	$v=1.5$
		6	

Question	Answer	Marks	Guidance
6(i)	Power $=350 \times 15=5250 \mathrm{~W}$	B1	Allow 5.25 kW
		1	
6(ii)		B1	Using Driving force $\mathrm{DF}=P / 15$
	$\mathrm{DF}+1200 g \sin 1-350=1200 \times 0.12$	M1	For using Newton's 2nd law down the slope
	$P=4270$ W (4268.56...)	A1	
		3	
6(iii)	$[1200 g \sin 1-350=1200 a]$	M1	Using Newton's 2nd law down the slope
		A1	Correct equation
	$\left[18^{2}=20^{2}+2 a s\right]$	M1	Using constant acceleration formulae with a complete method to find distance, s, travelled.
	Distance travelled $s=324 \mathrm{~m}$ (324.39)	A1	

Question	Answer	Marks	
6(iii)	Alternative method for Q6(iii)		
	PE loss $=1200 g \times s \sin 1$ KE loss $=1 / 2 \times 1200 \times\left(20^{2}-18^{2}\right)$	M1	Attempt either PE loss or KE loss
		A1	Both PE loss and KE loss correct
	$\left[1200 g \times s \sin 1+1 / 2 \times 1200 \times\left(20^{2}-18^{2}\right)=350 s\right]$	M1	Apply work-energy equation to the car
	Distance travelled $s=324 \mathrm{~m}(324.39)$	$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(i)	At liquid surface, speed $=0+g \times 0.8[=8]$ or $0.3 g \times 1 / 2(0+v) \times 0.8=1 / 2(0.3) v^{2} \rightarrow v=8$	B1	Using constant acceleration equation $v=u+a t$ or PE loss = KE gain
	PE lost in water $=0.3 g \times 1.25[=3.75]$	B1	
	$\left[1 / 2 \times 0.3 \times\left(8^{2}-v^{2}\right)+0.3 g \times 1.25=1.2\right]$	M1	Using work-energy for downward motion in the tank PE loss + KE loss $=$ Work done against resistance
	$v=9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
	Alternative method for Q7(i)		
	Height above tank $=1 / 2 \times g \times 0.8^{2}[=3.2]$	B1	
	Total PE loss $=0.3 g \times(3.2+1.25)[=13.35]$	B1	
	$\left[0.3 g \times(3.2+1.25)=1 / 2 \times 0.3 \times v^{2}+1.2\right]$	M1	Work-energy equation for the total downward motion
	$v=9 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
7(ii)	$[-0.3 g-1.8=0.3 a]$	M1	Using Newton's 2nd law for the upward motion in the tank
	$a=-16$	A1	
	$\left[1.25=7 T+1 / 2 \times(-16) \times T^{2}\right]$	M1	Using constant acceleration equations to find the time, T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$ (or 0.625 , on the way down)	A1	
	[v at surface $=7+(-16) \times 0.25=3]$	B1	Using $v=u+a T$ or equivalent to find v at surface
	$[0=3-g t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	

Question	Answer	Marks	Guidance
7(ii)	Alternative method for Q7(ii)		
	$[-0.3 g-1.8=0.3 a]$	M1	Using Newton's 2nd law for the upward motion in the tank
	$a=-16$	A1	
	$v^{2}=7^{2}+2 \times(-16) \times 1.25=9 \rightarrow v=3$	B1	Using constant acceleration equations to find v at the surface
	$\begin{aligned} & 1.25=1 / 2(7+3) \times T \\ & \text { or } 3=7+(-16) \times T \end{aligned}$	M1	Using $s=1 / 2(u+v) \times T$ or $v=u+a T$ to find the time, T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$	A1	
	$[0=3-g t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	

Question	Answer	Marks	Guidance
7(ii)	Second Alternative method for Q7(ii)		
	$\left[1 / 2 \times 0.3 \times\left(7^{2}-v^{2}\right)=0.3 g \times 1.25+1.8 \times 1.25\right]$	M1	Work-energy equation for motion from bottom to surface
		A1	Correct equation
	$v=3$	B1	Find v at surface from rearrangement of work-energy
	$[1.25=1 / 2(7+3) \times T]$	M1	Using $s=1 / 2(u+v) \times T$ to find the time T, for the particle to travel from the bottom to the surface of the liquid
	$T=0.25$	A1	
	$[0=3-10 t \rightarrow t=0.3]$	M1	Attempt to find the time, t, taken for the particle to travel from the surface to reach maximum height using their $v \neq 7$
	Total time $=T+t=0.55 \mathrm{~s}$	A1	
		7	

