Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$4.5 = 2.5 + a \times 5$	M1	For use of $v = u + at$
	a = 0.4	A1	
	F - 1.5 = 0.2a	M1	For use of Newton's second law
	<i>F</i> =1.58	A1	
		4	

Question	Answer	Marks	Guidance
2(i)	Resistance = Driving force = $\frac{4080000}{85}$ = 48 000 N	B1	Correct use of $P = Fv$ and using DF = Resistance
		1	
2(ii)	$DF = \frac{P}{85}$	B1	$DF = \frac{P}{v}$
	$DF - 48\ 000 - 490\ 000\ g \times \frac{1}{200} = 0$	M1	For applying Newton's second law (3 terms)
	$P = 72500 \times 85 = 6.16$ MW	A1	
		3	

9709/41

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3	[KE gained = $\frac{1}{2} \times 2500 \times (30^2 - 20^2) (= 625000 \text{ J})$ PE lost = $2500 g \times 400 \sin 4 (= 697564.7 \text{ J})$	M1	KE gained or PE lost attempted
		A1	Both KE and PE correct
	[WD by engine +2500 g × 400 sin 4 + $\frac{1}{2}$ × 2500 × 20 ² = 600 × 400 + $\frac{1}{2}$ × 2500 × 30 ²]	M1	Using work-energy equation in the form WD by engine + PE lost = WD against F + KE gain
	Work done by engine + PE lost = $600 \times 400 + 625\ 000$	A1	Work-energy equation all correct
	Work done = $167\ 000\ J\ (167\ 435.2)$	A1	
		5	

Question	Answer	Marks	Guidance
4(i)	$0.6^2 = 0 + 2a \times 0.8$	M1	For use of $v^2 = u^2 + 2as$
	<i>a</i> = 0.225	A1	
	T - 0.3 g = 0.3a	M1	For using Newton's second law for the 0.3 kg particle
	T = 3.07 N (3.0675 N)	A1	
		4	

9709/41

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(ii)	mg - T = ma, m(10 - 0.225) = 3.0675	M1	For using Newton's second law applied to the <i>m</i> kg particle
	m = 0.314 kg (0.31381)	A1	
		2	

Question	Answer	Marks	Guidance
5(i)		M1	For resolving forces horizontally or vertically o.e.
	$25 \cos 30 - 15 \cos 40 (= 10.1599)$	A1	
	$25\sin 30 + 15\sin 40 - 30 (= -7.8581)$	A1	
		M1	For using a method for either magnitude or direction
	Magnitude = $\sqrt{(10.15^2 + 7.858^2)} = 12.8 \text{ N}$	A1	Magnitude = 12.844
	Angle 37.7° below the horizontal in the direction <i>BA</i>	A1	
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(ii)	$F\cos 40 = 25\cos 30$	M1	For equating forces in the direction <i>BC</i> to zero
	<i>F</i> = 28.3	A1	<i>F</i> = 28.2628
	New resultant force = $28.26\sin 40 + 25 \sin 30 - 30 = 0.667$ N upwards	B1	
		3	

Question	Answer	Marks	Guidance
6(i)		M1	For using constant acceleration equations such as $s = ut + \frac{1}{2}at^2$ or equivalent complete methods to find expressions for PQ or QR or PR
	For PQ $0.8 = 0.6u + 0.18a$	A1	
	For PR $1.6 = 1.6u + 1.28a$	A1	or for $QR \ 0.8 = (u + a \times 0.6) \times 1 + 0.5a$
		M1	Solving simultaneously two relevant equations in <i>u</i> and <i>a</i>
	Deceleration = $\frac{2}{3}$ ms ⁻²	A1	AG
	$u = \frac{23}{15}$	B1	
		6	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

9709_w18_ms_41

Question	Answer	Marks	Guidance
6(ii)	$R = mg\cos 3$	B1	
	$F = \mu mg \cos 3$	M1	For use of $F = \mu R$
	$-mg\sin 3 - \mu \times mg\cos 3 = m \times \left(-\frac{2}{3}\right)$	M1	For using Newton's second law (3 terms)
	$\mu = 0.0144 \ (0.014350)$	A1	
		4	

Question	Answer	Marks	Guidance
7(i)	$v = \int (5.4 - 1.62t) \mathrm{d}t$	M1	For using integration of <i>a</i> to find <i>v</i>
	$v = 5.4t - 0.81t^2 (+C)$	A1	
	$5.4t - 0.81t^2 = 0$	M1	For solving $v = 0$
	$t = 6\frac{2}{3} = \frac{20}{3}s$	A1	
		4	
7(ii)	$v(10) = -27 \text{ ms}^{-1}$	B1	
	Inverted parabola	B1	
	$v = 0$ at $t = 0$, negative at $t = 10$ and through $\left(6\frac{2}{3}, 0\right)$	B1	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

9709_w18_ms_41

Question	Answer	Marks	Guidance
7(iii)	$s = \int \left(5.4t - 0.81t^2 \right) dt$	M1	For using integration of <i>v</i> to find <i>s</i>
	$s = 2.7t^2 - 0.27t^3 (+C)$	A1	
	At $t = 6\frac{2}{3}$, displacement = 40	M1	For evaluating the integral at the time when $v = 0$
	At $t = 10$ displacement = 0	M1	For evaluating the integral at time $t = 10$
	Total distance = 80 m	A1	
		5	