Question	Answer	Marks	
1	$4.5=2.5+a \times 5$	M1	For use of $v=u+a t$
	$a=0.4$	$\mathbf{A 1}$	
	$F-1.5=0.2 a$	$\mathbf{M 1}$	For use of Newton's second law
	$F=1.58$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	$\text { Resistance }=\text { Driving force }=\frac{4080000}{85}=48000 \mathrm{~N}$	B1	Correct use of $P=F v$ and using $\mathrm{DF}=$ Resistance
		1	
2(ii)	$\mathrm{DF}=\frac{P}{85}$	B1	$\mathrm{DF}=\frac{P}{v}$
	$\mathrm{DF}-48000-490000 \mathrm{~g} \times \frac{1}{200}=0$	M1	For applying Newton's second law (3 terms)
	$P=72500 \times 85=6.16 \mathrm{MW}$	A1	
		3	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & {\left[\mathrm{KE} \text { gained }=\frac{1}{2} \times 2500 \times\left(30^{2}-20^{2}\right)(=625000 \mathrm{~J})\right.} \\ & \text { PE lost }=2500 \mathrm{~g} \times 400 \sin 4(=697564.7 \mathrm{~J}) \end{aligned}$	M1	KE gained or PE lost attempted
		A1	Both KE and PE correct
	$\begin{aligned} & \text { [WD by engine }+2500 g \times 400 \sin 4+\frac{1}{2} \times 2500 \times 20^{2} \\ & =600 \times 400+\frac{1}{2} \times 2500 \times 30^{2} \text {] } \end{aligned}$	M1	Using work-energy equation in the form WD by engine +PE lost $=\mathrm{WD}$ against $\mathrm{F}+\mathrm{KE}$ gain
	Work done by engine + PE lost $=600 \times 400+625000$	A1	Work-energy equation all correct
	Work done $=167000 \mathrm{~J}(167435.2 \ldots)$	A1	
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$0.6^{2}=0+2 a \times 0.8$	$\mathbf{M 1}$	For use of $v^{2}=u^{2}+2 a s$
	$a=0.225$	$\mathbf{A 1}$	
	$T-0.3 g=0.3 a$	$\mathbf{M 1}$	For using Newton's second law for the 0.3 kg particle
	$T=3.07 \mathrm{~N}(3.0675 \mathrm{~N})$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$m g-T=m a, m(10-0.225)=3.0675$	M1	For using Newton's second law applied to the $m \mathrm{~kg}$ particle
	$m=0.314 \mathrm{~kg}(0.31381 \ldots)$	$\mathbf{A 1}$	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(i)		M1	For resolving forces horizontally or vertically o.e.
	$25 \cos 30-15 \cos 40$ ($=10.1599 \ldots)$	A1	
	$25 \sin 30+15 \sin 40-30(=-7.8581 \ldots)$	A1	
		M1	For using a method for either magnitude or direction
	$\text { Magnitude }=\sqrt{\left(10.15 \ldots .^{2}+7.858 \ldots .^{2}\right)}=12.8 \mathrm{~N}$	A1	Magnitude $=12.844 \ldots$
	Angle 37.7° below the horizontal in the direction $B A$	A1	
		6	

Question	Answer	Marks	Guidance
$5($ ii $)$	$F \cos 40=25 \cos 30$	M1	For equating forces in the direction $B C$ to zero
	$F=28.3$	A1	$F=28.2628 \ldots$
	New resultant force $=28.26 \ldots \sin 40+25 \sin 30-30=0.667 \mathrm{~N}$ upwards	$\mathbf{B 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(i)		M1	For using constant acceleration equations such as $s=u t+\frac{1}{2} a t^{2}$ or equivalent complete methods to find expressions for $P Q$ or $Q R$ or PR
	For $P Q \quad 0.8=0.6 u+0.18 a$	A1	
	For $P R \quad 1.6=1.6 u+1.28 a$	A1	or for $Q R \quad 0.8=(u+a \times 0.6) \times 1+0.5 a$
		M1	Solving simultaneously two relevant equations in u and a
	$\text { Deceleration }=\frac{2}{3} \mathrm{~ms}^{-2}$	A1	AG
	$u=\frac{23}{15}$	B1	
		6	

Question	Answer	Marks	Guidance
$6(\mathrm{ii})$	$R=m g \cos 3$	$\mathbf{B 1}$	
	$F=\mu m g \cos 3$	M1	For use of $F=\mu R$
	$-m g \sin 3-\mu \times m g \cos 3=m \times\left(-\frac{2}{3}\right)$	$\mathbf{M 1}$	For using Newton's second law (3 terms)
	$\mu=0.0144(0.014350 \ldots)$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(i)	$v=\int(5.4-1.62 t) \mathrm{d} t$	M1	For using integration of a to find v
	$v=5.4 t-0.81 t^{2}(+C)$	A1	
	$5.4 t-0.81 t^{2}=0$	M1	For solving $v=0$
	$t=6 \frac{2}{3}=\frac{20}{3} s$	A1	
		4	
7(ii)	$v(10)=-27 \mathrm{~ms}^{-1}$	B1	
	Inverted parabola	B1	
	$v=0$ at $t=0$, negative at $t=10$ and through $\left(6 \frac{2}{3}, 0\right)$	B1	
		3	

Question	Answer	Marks	Guidance
7(iii)	$s=\int\left(5.4 t-0.81 t^{2}\right) d t$	M1	For using integration of v to find s
	$s=2.7 t^{2}-0.27 t^{3}(+C)$	A1	
	At $t=6 \frac{2}{3}$, displacement $=40$	M1	For evaluating the integral at the time when $v=0$
	At $t=10$ displacement $=0$	M1	For evaluating the integral at time $t=10$
	Total distance $=80 \mathrm{~m}$	A1	
		5	

