Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
1	<i>EITHER</i> : State or imply non-modular inequality $2^{2}(2x-a)^{2} < (x+3a)^{2}$, or corresponding quadratic equation, or pair of linear equations $2(2x-a) = \pm (x+3a)$	B1	
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	
	Obtain critical values $x = \frac{5}{3}a$ and $x = -\frac{1}{5}a$	A1	
	State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$	A1	
	<i>OR</i> : Obtain critical value $x = \frac{5}{3}a$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	B1	
	Obtain critical value $x = -\frac{1}{5}a$ similarly	B2	
	State final answer $-\frac{1}{5}a < x < \frac{5}{3}a$ [Do not condone \leq for $<$ in the final answer.]	B1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
2	Rearrange the equation in the form $ae^{2x} = b$ or $ae^{x} = be^{-x}$	M1	
	Obtain correct equation in either form with $a = 2$ and $b = 5$	A1	
	Use correct method to solve for <i>x</i>	M1	
	Obtain answer $x = 0.46$	A1	
		4	

Question	Answer	Marks	Guidance
3 (i)	Sketch a relevant graph, e.g. $y = x^3$	B1	
	Sketch a second relevant graph, e.g. $y = 3 - x$, and justify the given statement	B1	Consideration of behaviour for $x < 0$ is needed for the second B1
		2	
3(ii)	State or imply the equation $x = (2x^3 + 3)/(3x^2 + 1)$	B1	
	Rearrange this in the form $x^3 = 3 - x$, or commence work <i>vice versa</i>	B1	
		2	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(iii)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.213	A1	
	Show sufficient iterations to 5 d.p. or more to justify 1.213 to 3 d.p., or show there is a sign change in the interval (1.2125, 1.2135)	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	Obtain $\frac{dx}{d\theta} = 2\cos\theta + 2\cos2\theta$ or $\frac{dy}{d\theta} = -2\sin\theta - 2\sin2\theta$	B1	
	Use $dy/dx = dy/d\theta \div dx/d\theta$	M1	
	Obtain correct $\frac{dy}{dx}$ in any form, e.g. $-\frac{2\sin\theta + 2\sin 2\theta}{2\cos\theta + 2\cos 2\theta}$	A1	
		3	
4(ii)	Equate denominator to zero and use any correct double angle formula	M1*	
	Obtain correct 3-term quadratic in $\cos \theta$ in any form	A1	
	Solve for θ	depM1*	
	Obtain $x = 3\sqrt{3}/2$ and $y = \frac{1}{2}$, or exact equivalents	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5	Separate variables correctly and integrate at least one side	B1	
	Obtain term ln y	B1	
	Obtain terms $2 \ln x - \frac{1}{2} x^2$	B1+B1	
	Use $x = 1$, $y = 1$ to evaluate a constant, or as limits	M1	
	Obtain correct solution in any form, e.g. $\ln y = 2\ln x - \frac{1}{2}x^2 + \frac{1}{2}$	A1	
	Rearrange as $y = x^2 \exp\left(\frac{1}{2} - \frac{1}{2}x^2\right)$, or equivalent	A1	
		7	

Question	Answer	Marks	Guidance
6(i)	Rearrange in the form $\sqrt{3} \sin x - \cos x = \sqrt{2}$	B1	
	State $R = 2$	B1	
	Use trig formulae to obtain α	M1	
	Obtain $\alpha = 30^{\circ}$ with no errors seen	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(ii)	Evaluate $\sin^{-1}\left(\frac{\sqrt{2}}{R}\right)$	B1ft	
	Carry out a correct method to find a value of <i>x</i> in the given interval	M1	
	Obtain answer $x = 75^{\circ}$	A1	
	Obtain a second answer e.g. $x = 165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	A1ft	
		4	

Question	Answer	Marks	Guidance
7(i)	Use product rule	M1*	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and obtain an equation in a single trig function	depM1*	
	Obtain a correct equation, e.g. $3\tan^2 x = 2$	A1	
	Obtain answer $x = 0.685$	A1	
		5	

Cambridge International A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
7(ii)	Use the given substitution and reach $a \int (u^2 - u^4) du$	M1	
	Obtain correct integral with $a = 5$ and limits 0 and 1	A1	
	Use correct limits in an integral of the form $a\left(\frac{1}{3}u^3 - \frac{1}{5}u^5\right)$	M1	
	Obtain answer $\frac{2}{3}$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
8(i)	<i>EITHER</i> : Multiply numerator and denominator by $1 + 2i$, or equivalent, or equate to $x + iy$, obtain two equations in x and y and solve for x or for y	M1	
	Obtain quotient $-\frac{4}{5} + \frac{7}{5}$ i, or equivalent	A1	
	Use correct method to find either r or θ	M1	
	Obtain $r = 1.61$	A1	
	Obtain $\theta = 2.09$	A1	
	<i>OR</i> : Find modulus or argument of $2 + 3i$ or of $1 - 2i$	B1	
	Use correct method to find <i>r</i>	M1	
	Obtain $r = 1.61$	A1	
	Use correct method to find θ	M1	
	Obtain $\theta = 2.09$	A1	
		5	
8(ii)	Show a circle with centre $3 - 2i$	B1	
	Show a circle with radius 1	B1ft	Centre not at the origin
	Carry out a correct method for finding the least value of $ z $	M1	
	Obtain answer $\sqrt{13} - 1$	A1	
		4	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
9(i)	State or imply the form $\frac{A}{2-x} + \frac{B}{3+2x} + \frac{C}{(3+2x)^2}$	B1	
	Use a correct method to find a constant	M1	
	Obtain one of $A = 1$, $B = -1$, $C = 3$	A1	
	Obtain a second value	A1	
	Obtain the third value [Mark the form $\frac{A}{2-x} + \frac{Dx+E}{(3+2x)^2}$, where $A = 1, D = -2$ and $E = 0, B1M1A1A1A1$ as above.]	A1	
		5	
9(ii)	Integrate and obtain terms $-\ln(2-x) - \frac{1}{2}\ln(3+2x) - \frac{3}{2(3+2x)}$	B3ft	The f.t is on A , B , C ; or on A , D , E .
	Substitute correctly in an integral with terms $a \ln (2 - x)$, $b \ln (3 + 2x)$ and $c / (3 + 2x)$ where $abc \neq 0$	M1	
	Obtain the given answer after full and correct working [Correct integration of the <i>A</i> , <i>D</i> , <i>E</i> form gives an extra constant term if integration by parts is used for the second partial fraction.]	A1	
		5	

Cambridge International A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
10(i)	EITHER: Expand scalar product of a normal to m and a direction vector of l	M1	
	Verify scalar product is zero	A1	
	Verify that one point of <i>l</i> does not lie in the plane	A1	
	<i>OR</i> : Substitute coordinates of a general point of <i>l</i> in the equation of the plane <i>m</i>	M1	
	Obtain correct equation in λ in any form	A1	
	Verify that the equation is not satisfied for any value of λ	A1	
		3	
10(ii)	Use correct method to evaluate a scalar product of normal vectors to m and n	M1	
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1	
	Obtain answer 74.5° or 1.30 radians	A1	
		3	
10(iii)	<i>EITHER</i> : Using the components of a general point <i>P</i> of <i>l</i> form an equation in λ by equating the perpendicular distance from <i>n</i> to 2	M1	
	<i>OR</i> : Take a point Q on l , e.g. $(5, 3, 3)$ and form an equation in λ by equating the length of the projection of QP onto a normal to plane n to 2	M1	
	Obtain a correct modular or non-modular equation in any form	A1	
	Solve for λ and obtain a position vector for <i>P</i> , e.g. $7\mathbf{i} + 5\mathbf{j} + 7\mathbf{j}$ from $\lambda = 3$	A1	
	Obtain position vector of the second point, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ from $\lambda = -1$	A1	
		4	