Question	Answer	Marks	Guidance
1	EITHER: State or imply non-modular inequality $2^{2}(2 x-a)^{2}<(x+3 a)^{2}$, or corresponding quadratic equation, or pair of linear equations $2(2 x-a)= \pm(x+3 a)$	B1	
	Make reasonable attempt at solving a 3-term quadratic, or solve two linear equations for x	M1	
	Obtain critical values $x=\frac{5}{3} a$ and $x=-\frac{1}{5} a$	A1	
	State final answer $-\frac{1}{5} a<x<\frac{5}{3} a$	A1	
	OR: Obtain critical value $x=\frac{5}{3} a$ from a graphical method, or by inspection, or by solving a linear equation or an inequality	B1	
	Obtain critical value $x=-\frac{1}{5} a$ similarly	B2	
	State final answer $-\frac{1}{5} a<x<\frac{5}{3} a$ [Do not condone \leqslant for $<$ in the final answer.]	B1	
		4	

Question	Answer	Marks	Guidance
2	Rearrange the equation in the form $a \mathrm{e}^{2 x}=b$ or $a \mathrm{e}^{x}=b \mathrm{e}^{-x}$	M1	
	Obtain correct equation in either form with $a=2$ and $b=5$	A1	
	Use correct method to solve for x	M1	
	Obtain answer $x=0.46$	A1	
		4	

Question	Answer	Marks	Guidance
3 (i)	Sketch a relevant graph, e.g. $y=x^{3}$	B1	
	Sketch a second relevant graph, e.g. $y=3-x$, and justify the given statement	B1	Consideration of behaviour for $x<0$ is needed for the second B1
		State or imply the equation $x=\left(2 x^{3}+3\right) /\left(3 x^{2}+1\right)$	$\mathbf{2}$

Question	Answer	Marks	Guidance
3 (iii)	Use the iterative formula correctly at least once	M1	
	Obtain final answer 1.213	A1	
	Show sufficient iterations to 5 d.p. or more to justify 1.213 to 3 d.p., or show there is a sign change in the interval (1.2125, 1.2135)	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
4(i)	$\text { Obtain } \frac{\mathrm{d} x}{\mathrm{~d} \theta}=2 \cos \theta+2 \cos 2 \theta \text { or } \frac{\mathrm{d} y}{\mathrm{~d} \theta}=-2 \sin \theta-2 \sin 2 \theta$	B1	
	Use $\mathrm{d} y / \mathrm{d} x=\mathrm{d} y / \mathrm{d} \theta \div \mathrm{d} x / \mathrm{d} \theta$	M1	
	Obtain correct $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in any form, e.g. $-\frac{2 \sin \theta+2 \sin 2 \theta}{2 \cos \theta+2 \cos 2 \theta}$	A1	
		3	
4(ii)	Equate denominator to zero and use any correct double angle formula	M1*	
	Obtain correct 3-term quadratic in $\cos \theta$ in any form	A1	
	Solve for θ	depM1*	
	Obtain $x=3 \sqrt{3} / 2$ and $y=\frac{1}{2}$, or exact equivalents	A1	
		4	

Question	Answer	Marks	Guidance
5	Separate variables correctly and integrate at least one side	B1	
	Obtain term $\ln y$	B1	
	Obtain terms $2 \ln x-\frac{1}{2} x^{2}$	B1+B1	
	Use $x=1, y=1$ to evaluate a constant, or as limits	M1	
	Obtain correct solution in any form, e.g. $\ln y=2 \ln x-\frac{1}{2} x^{2}+\frac{1}{2}$	A1	
	Rearrange as $y=x^{2} \exp \left(\frac{1}{2}-\frac{1}{2} x^{2}\right)$, or equivalent	A1	
		7	

Question	Answer	Marks	Guidance
$6(\mathrm{i})$	Rearrange in the form $\sqrt{3} \sin x-\cos x=\sqrt{2}$	B1	
	State $R=2$	B1	
	Use trig formulae to obtain α	M1	
	Obtain $\alpha=30^{\circ}$ with no errors seen	A1	
		4	

Question	Answer	Marks	Guidance
6(ii)	Evaluate $\sin ^{-1}\left(\frac{\sqrt{2}}{R}\right)$	B1ft	
	Carry out a correct method to find a value of x in the given interval	M1	
	Obtain answer $x=75^{\circ}$	A1	
	Obtain a second answer e.g. $x=165^{\circ}$ and no others [Treat answers in radians as a misread. Ignore answers outside the given interval.]	A1ft	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	Use product rule	M1*	
	Obtain correct derivative in any form	A1	
	Equate derivative to zero and obtain an equation in a single trig function	depM1*	
	Obtain a correct equation, e.g. $3 \tan ^{2} x=2$	A1	
	Obtain answer $x=0.685$	A1	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7 (ii)	Use the given substitution and reach $a \int\left(u^{2}-u^{4}\right) \mathrm{d} u$	M1	
	Obtain correct integral with $a=5$ and limits 0 and 1	A1	
	Use correct limits in an integral of the form $a\left(\frac{1}{3} u^{3}-\frac{1}{5} u^{5}\right)$	M1	
	Obtain answer $\frac{2}{3}$	A1	

Question	Answer	Marks	Guidance
8(i)	EITHER: Multiply numerator and denominator by $1+2 \mathrm{i}$, or equivalent, or equate to $x+i y$, obtain two equations in x and y and solve for x or for y	M1	
	Obtain quotient $-\frac{4}{5}+\frac{7}{5}$ i, or equivalent	A1	
	Use correct method to find either r or θ	M1	
	Obtain $r=1.61$	A1	
	Obtain $\theta=2.09$	A1	
	OR: Find modulus or argument of $2+3 \mathrm{i}$ or of $1-2 \mathrm{i}$	B1	
	Use correct method to find r	M1	
	Obtain $r=1.61$	A1	
	Use correct method to find θ	M1	
	Obtain $\theta=2.09$	A1	
		5	
8(ii)	Show a circle with centre $3-2 \mathrm{i}$	B1	
	Show a circle with radius 1	B1ft	Centre not at the origin
	Carry out a correct method for finding the least value of $\|z\|$	M1	
	Obtain answer $\sqrt{13}-1$	A1	
		4	

Question	Answer	Marks	Guidance
9(i)	State or imply the form $\frac{A}{2-x}+\frac{B}{3+2 x}+\frac{C}{(3+2 x)^{2}}$	B1	
	Use a correct method to find a constant	M1	
	Obtain one of $A=1, B=-1, C=3$	A1	
	Obtain a second value	A1	
	Obtain the third value [Mark the form $\frac{A}{2-x}+\frac{D x+E}{(3+2 x)^{2}}$, where $A=1, D=-2$ and $E=0$, B1M1A1A1A1 as above.]	A1	
		5	
9(ii)	Integrate and obtain terms $-\ln (2-x)-\frac{1}{2} \ln (3+2 x)-\frac{3}{2(3+2 x)}$	B3ft	The f.t is on A, B, C; or on A, D, E.
	Substitute correctly in an integral with terms $a \ln (2-x)$, $b \ln (3+2 x)$ and $c /(3+2 x)$ where $a b c \neq 0$	M1	
	Obtain the given answer after full and correct working [Correct integration of the A, D, E form gives an extra constant term if integration by parts is used for the second partial fraction.]	A1	
		5	

Question	Answer	Marks	Guidance
10(i)	EITHER: Expand scalar product of a normal to m and a direction vector of l	M1	
	Verify scalar product is zero	A1	
	Verify that one point of l does not lie in the plane	A1	
	OR: \quad Substitute coordinates of a general point of l in the equation of the plane m	M1	
	Obtain correct equation in λ in any form	A1	
	Verify that the equation is not satisfied for any value of λ	A1	
		3	
10(ii)	Use correct method to evaluate a scalar product of normal vectors to m and n	M1	
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	M1	
	Obtain answer 74.5° or 1.30 radians	A1	
		3	
10(iii)	EITHER: Using the components of a general point P of l form an equation in λ by equating the perpendicular distance from n to 2	M1	
	OR: \quad Take a point Q on l, e.g. $(5,3,3)$ and form an equation in λ by equating the length of the projection of $Q P$ onto a normal to plane n to 2	M1	
	Obtain a correct modular or non-modular equation in any form	A1	
	Solve for λ and obtain a position vector for P, e.g. $7 \mathbf{i}+5 \mathbf{j}+7 \mathbf{j}$ from $\lambda=3$	A1	
	Obtain position vector of the second point, e.g. $3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ from $\lambda=-1$	A1	
		4	

