Question	Answer	Marks	Guidance
1(i)	State or imply non-modular equation $(9 x-2)^{2}=(3 x+2)^{2}$ or pair of linear equations	B1	
	Attempt solution of quadratic equation or of 2 linear equations	M1	
	Obtain 0 and $\frac{2}{3}$	A1	SC: B1 for one correct solution
		3	
1(ii)	Apply logarithms and use power law for $3^{y}=k$ where $k>0$	M1	Must be using their answers to part (i)
	Obtain -0.369	A1	
		2	

Question	Answer	Marks	
2	Integrate to obtain form $k \ln (2 x+1)$	M1	
	Obtain correct $3 \ln (2 x+1)$	A1	
	Use subtraction law of logarithms correctly	M1	Dependent on first M1
	Use power law of logarithms correctly	M1	Dependent on first M1
	Confirm $\ln 125$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
3	State $\frac{1}{\cos ^{2} \theta}=\frac{3}{\sin \theta}$ or $1+\tan ^{2} \theta=\frac{3}{\sin \theta}$	$\mathbf{B 1}$	
	Produce quadratic equation in $\sin \theta$	M1	Dependent on B1
	Solve 3-term quadratic equation to find value between -1 and 1 for $\sin \theta$	M1	Dependent on first M1
	Obtain $\sin \theta=\frac{1}{6}(-1+\sqrt{37})$ and hence 57.9	$\mathbf{A 1}$	
	Obtain 122.1 and no others between 0 and 180	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
4 (i)	Substitute -2 and simplify	M1	
	Obtain $16-16+8+24-32$ and hence zero and conclude	A1	AG; necessary detail needed
	4(ii)	Attempt division by $x+2$ to reach at least partial quotient $x^{3}+k x$ or use of identity or inspection	$\mathbf{2}$
	Obtain $x^{3}+2 x-16$	A1	
	Equate to zero and obtain $x=\sqrt[3]{16-2 x}$	A1	

Question	Answer	Marks	Guidance
4 (iii)	Use iteration process correctly at least once	M1	
	Obtain final answer 2.256	$\mathbf{A 1}$	
	Show sufficient iterations to 6 sf to justify answer or show a sign change in the interval (2.2555, 2.2565)	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$5(\mathrm{i})$	Use product rule to differentiate y obtaining $k_{1} \mathrm{e}^{2 t}+k_{2} t \mathrm{e}^{2 t}$	M1	
	Obtain correct $3 \mathrm{e}^{2 t}+6 \mathrm{e}^{2 t}$	$\mathbf{A 1}$	
	State derivative of x is $1+\frac{1}{t+1}$	B1	
	Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} / \frac{\mathrm{d} x}{\mathrm{~d} t}$ with $t=0$ to find gradient	M1	
	Obtain $y=\frac{3}{2} x$ or equivalent	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
5(ii)	Equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ or $\frac{\mathrm{d} y}{\mathrm{dt}}$ to zero and solve for t	M1	Allow full marks if correct solution is obtained but $\frac{\mathrm{d} x}{\mathrm{~d} t}$ is incorrect
	Obtain $t=-\frac{1}{2}$	A1	
	Obtain $x=-1.19$	A1	
	Obtain $y=-0.55$	A1	
		4	

Question	Answer	Marks	Guidance
6 (i)	Use y values $2, \sqrt{2.5}, 1$ or equivalents	B1	
	Use correct formula, or equivalent, with $h=\frac{1}{2} \pi$ and three y values	M1	
	Obtain $\frac{1}{2} \times \frac{1}{2} \pi(2+2 \sqrt{2.5}+1)$ or equivalent and hence 4.84	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	State or imply volume is $\int \pi\left(1+3 \cos ^{2} \frac{1}{2} x\right) \mathrm{d} x$	B1	Allow if π appears later; condone omission of $\mathrm{d} x$
	Use appropriate identity to express integrand in form $k_{1}+k_{2} \cos x$	M1	
	Obtain $\int \pi\left(\frac{5}{2}+\frac{3}{2} \cos x\right) \mathrm{d} x$ or $\int\left(\frac{5}{2}+\frac{3}{2} \cos x\right) \mathrm{d} x$	A1	Condone omission of $\mathrm{d} x$
	Integrate to obtain $\pi\left(\frac{5}{2} x+\frac{3}{2} \sin x\right)$ or $\frac{5}{2} x+\frac{3}{2} \sin x$	A1	
	Obtain $\frac{5}{2} \pi^{2}$ with no errors seen	A1	
		5	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	State expression of form $k_{1} \cos 2 x+k_{2} \sin 2 x$	M1	
	State correct $2 \cos 2 x-6 \sin 2 x$	A1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
7(ii)	State $R=\sqrt{40}$ or $6.324 \ldots$	B1 FT	Following their derivative
	Use appropriate trigonometry to find α	M1	
	Obtain 1.249...	A1	Allow α in degrees at this point
	Equate their $R \cos (2 x+\alpha)$ to 3 and find $\cos ^{-1}(3 \div R)$	*M1	
	Carry out correct process to find one value of α	M1	Dependent on *M1, allow for $-0.086 \ldots$.
	Obtain 1.979	A1	
	Carry out correct process to find second value of α within the range	M1	Dependent on *M1
	Obtain 3.055	A1	Allow 3.056
		8	

