Question	Answer	Marks	Guidance
1	Either		
	State or imply non-modular inequality $(3 x-5)^{2}<4 x^{2}$ or corresponding equation or pair of linear equations	B1	SC: Common error $(3 x-5)^{2}<2 x^{2}$
	Attempt solution of 3-term quadratic equation or solution of 2 linear equations	M1	
	Obtain critical values 1 and 5	A1	Critical values $\frac{15 \pm 5 \sqrt{2}}{7}$ or $3.15,1.13$ allow B1
	State correct answer $1<x<5$	A1	$\begin{aligned} & \frac{15-5 \sqrt{2}}{7}<x<\frac{15+5 \sqrt{2}}{7} \text { or } 1.13<x<3.15 \mathrm{~B} 1 \\ & \text { Max } 2 / 4 \\ & \text { Allow M1 for }(7 x \pm 5)(x \pm 5) \end{aligned}$
	$\underline{\text { Or }}$		
	Obtain $x=5$ by solving linear equation or inequality or from graphical method or inspection	B1	Allow B1 for 5 seen, maybe in an inequality
	Obtain $x=1$ similarly	B2	Allow B 2 for 1 seen, maybe in an inequality
	State correct answer $1<x<5$	B1	
		4	

Question	Answer	Marks	Guidance
2	Recognise 9^{x} as $\left(3^{x}\right)^{2}$ or $3^{2 x}$	B1	May be implied by $3^{x}\left(3^{x}+1\right)(=240)$
	Attempt solution of quadratic equation in 3^{x}	*M1	Perhaps using substitution $u=3^{x}$
	Obtain, finally, $3^{x}=15$ only	A1	
	Apply logarithms and use power law for $3^{x}=k$ where $k>0$	M1	Dependent ${ }^{*} \mathrm{M}$, need to see $x \ln 3=\ln k, x=\log _{3} k$ oe
	Obtain 2.465	A1	May be done using $9^{\frac{x}{2}}$, same processes
		5	

Question	Answer	Marks	Guidance
3	Differentiate to obtain $10 \cos 2 x$	B1	
	Differentiate to obtain $-6 \sec ^{2} 2 x$	B1	
	Equate first derivative to zero and find value for $\cos ^{3} 2 x$	M1	
	Use correct process for finding x from $\cos ^{3} 2 x=k$	M1	
	Obtain 0.284 nfww	A1	Or greater accuracy
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
4	Obtain $6 y \mathrm{e}^{2 x}+3 \mathrm{e}^{2 x} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $3 y \mathrm{e}^{2 x}$	B1	Allow unsimplified
	Obtain $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{2}	B1	
	Obtain 4 as a derivative of $4 x$ and zero as a derivative of 10	B1	Dependent B mark, must have at least one of the two previous B marks
	Substitute 0 and 2 to find gradient of curve	M1	Dependent on at least one B1
	Obtain $-\frac{16}{7}$ or -2.29	$\mathbf{A 1}$	Allow greater accuracy
		$\mathbf{5}$	

Question	Answer	Marks	
$5(\mathrm{i})$	Rearrange at least as far as $2 x=\ln (\ldots)$	M1	Allow if in terms of p, need to see y equated to 0
	Obtain $x=\frac{1}{2} \ln \left(1.6 x^{2}+4\right)$	A1	AG; necessary detail needed
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5(ii)	Either		
	Consider sign of $x-\frac{1}{2} \ln \left(1.6 x^{2}+4\right)$ for 0.75 and 0.85 or equivalent	M1	Need to see substitution of numbers
	Obtain -0.04 and 0.03 or equivalents and justify conclusion	A1	AG; necessary detail needed, change of sign or equivalent must be mentioned
	$\underline{\text { Or }}$		
	Consider sign of $5 \mathrm{e}^{2 x}-8 x^{2}-20$ for 0.75 and 0.85	M1	Need to see substitution of numbers
	Obtain $-2.09 \ldots$ and $1.58 \ldots$ or equivalents and justify conclusion	A1	AG; necessary detail needed, change of sign or equivalent must be mentioned
		2	
5(iii)	Use iteration process correctly at least once	M1	Starting with value such that iterations converge to correct values
	Obtain final value 0.80956	A1	Must be 5sf for the final answer
	Show sufficient iterations to justify value or show sign change in interval (0.809555, 0.809565)	A1	
		3	

Question	Answer	Marks	Guidance
5 (iv)	Obtain first derivative $10 \mathrm{e}^{2 x}-16 x$	$\mathbf{B 1}$	
	Substitute value from iteration to find gradient, must be in the form $p \mathrm{e}^{2 x}+q x$	$\mathbf{M 1}$	
	Obtain 37.5	$\mathbf{A 1}$	Or greater accuracy, allow awrt 37.5 from use of $x=0.8096,0.80955$ oe
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(a)	Integrate to obtain form $k \ln (3 x+2)$	*M1	Condone poor use of brackets if recovered later
	Obtain correct $4 \ln (3 x+2)$	A1	
	Substitute limits correctly	M1	Dependent *M, must see $k \ln 20-k \ln 5$ oe
	Apply relevant logarithm properties correctly	M1	Dependent $* \mathrm{M}$, do not allow $\frac{4 \ln 20}{4 \ln 5}$ oe, must be using both the subtraction and power laws correctly
	Obtain $\ln 256$ nfww	A1	AG; necessary detail needed
		5	

Question	Answer	Marks	Guidance
6(b)	Use identity to obtain $4(1-\cos 2 x)$ oe	B1	
	Use identity to obtain $\sec ^{2} 2 x-1$	B1	
	Integrate to obtain form $k_{1} x+k_{2} \sin 2 x+k_{3} \tan 2 x$	*M1	Allow M1 if integrand contains $p \cos 2 x+q \sec ^{2} 2 x$ and no other trig terms
	Obtain correct $3 x-2 \sin 2 x+\frac{1}{2} \tan 2 x$	A1	
	Apply limits correctly retaining exactness	M1	Dependent $* M$, allow $\sin \frac{\pi}{3}, \tan \frac{\pi}{3}$
	Obtain $\frac{1}{2} \pi-\frac{1}{2} \sqrt{3}$ or exact equivalent	A1	
		6	

Question	Answer	Marks	Guidance
7(i)	Substitute $-\frac{3}{2}$ and simplify	M1	Allow use of identity assuming a factor of $2 x+3$ to obtain a quadratic factor. Need to see use of 4 equations to verify quadratic for M1, A1 for conclusion. Allow verification by expansion. Allow use of identity including a remainder to obtain a quadratic factor and a remainder of zero. Need to see use of 4 equations for M1, A1 for conclusion. Allow verification by expansion. Allow use of long division , must reach a remainder of zero for M1
	Obtain $-27+9+15+3$ or equivalent, hence zero and conclude, may have explanation at start of working	A1	Need powers of $-\frac{3}{2}$ evaluating for A1 AG; necessary detail needed
		2	
7(ii)	Use $\cos 2 \theta=2 \cos ^{2} \theta-1$	B1	
	Simplify $a \cos ^{2} \theta+b=\frac{6 \cos \theta-5}{2 \cos \theta+1}$ to polynomial form	M1	
	Obtain $8 \cos ^{3} \theta+4 \cos ^{2} \theta-10 \cos \theta+3=0$	A1	AG; necessary detail needed, must be completely correct with no poor use of brackets for A1
		3	

Question	Answer	Marks	Guidance
7(iii)	Attempt either division by $2 x+3$ and reach partial quotient $x^{2}+k x$ or use of identity or inspection	*M1	Or equivalent using $\cos \theta$ or c
	Obtain quotient $4 x^{2}-4 x+1$	A1	Or equivalent
	Obtain factorised form $(2 x+3)(2 x-1)^{2}$	A1	Or equivalent, may be implied by later work
	Solve for $\cos \theta=k$ to find at least one value between 0 and 360	M1	Dependent *M
	Obtain 60 and 300 and no others	A1	SC1: Equation solver used to obtain 60 and 300 and no others, then $5 / 5$ SC2:Equation solver used to obtain 60 then $4 / 5$ SC 3: $\cos \theta=0.5,(\cos \theta=-1.5)$ seen implies first 3 marks.
		5	

