Question		Answer	Marks	Guidance
1	$7 \mathrm{C} 5 x^{2}(-2 / x)^{5}$	soi	B1	Can appear in an expansion. Allow 7C2
	21×-32	soi	B1	Identified. Allow (21x $\left.{ }^{2}\right) \times\left(-32 x^{-5}\right)$. Implied by correct answer
	-672		B1	Allow $\frac{-672}{x^{3}}$. If $0 / 3$ scored, 672 scores SCB1
			3	

Question	Answer	Marks	Guidance
2	$\mathrm{f}^{\prime}(x)=3 x^{2}+4 x-4$	B1	
	Factors or crit. values or sub any 2 values ($x \neq-2$) into $\mathrm{f}^{\prime}(x)$ soi	M1	Expect $(x+2)(3 x-2)$ or $-2,2 / 3$ or any 2 subs (excluding $x=-2$).
	For $-2<x<2 / 3, \mathrm{f}^{\prime}(x)<0$; for $x>2 / 3, \mathrm{f}^{\prime}(x)>0$ soi Allow \leqslant, \geqslant	M1	Or at least 1 specific value $(\neq-2)$ in each interval giving opp signs Or $\mathrm{f}^{\prime}(2 / 3)=0$ and $\mathrm{f}^{\prime \prime}(2 / 3) \neq 0$ (i.e. gradient changes sign at $x=2 / 3$)
	Neither www	A1	Must have 'Neither'
	ALT 1 At least 3 values of $\mathrm{f}(x)$	M1	e.g. $f(0)=7, f(1)=6, f(2)=15$
	At least 3 correct values of $\mathrm{f}(x)$	A1	
	At least 3 correct values of $\mathrm{f}(x)$ spanning $x=2 / 3$	A1	
	Shows a decreasing and then increasing pattern. Neither www	A1	Or similar wording. Must have 'Neither'
	ALT $2 \mathrm{f}^{\prime}(x)=3 x^{2}+4 x-4=3(x+2 / 3)^{2}-16 / 3$	B1B1	Do not condone sign errors
	$\mathrm{f}^{\prime}(x) \geqslant-\frac{16}{3}$	M1	
	$\mathrm{f}^{\prime}(x)<0$ for some values and >0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
		4	

Question	Answer	Marks	Guidance
3(i)	0.8 oe	B1	
		1	
3(ii)	$B D=5 \sin$ their 0.8	M1	Expect 3.58(7). Methods using degrees are acceptable
	$D C=5-5 \cos$ their 0.8	M1	Expect 1.51(6)
	$\begin{aligned} & \text { Sector }=1 / 2 \times 5^{2} \times \text { their } 0.8 \\ & \text { OR Seg }=1 / 2 \times 5^{2} \times[\text { their } 0.8-\sin \text { their } 0.8] \end{aligned}$	M1	Expect 10 for sector. Expect 1.03(3) for segment
	$\begin{aligned} & \text { Trap }=1 / 2(5+\text { their } D C) \times \text { their } B D \text { oe } \\ & \text { OR } \triangle B D C=1 / 2 \text { their } B D \times \text { their } C D \end{aligned}$	M1	OR (for last 2 marks) if X is on $A B$ and $X C$ is parallel to $B D$:
	Shaded area $=11.69-10$ OR $2.71(9)-1.03(3)=1.69$ cao	A1	$\begin{aligned} & B D C X-(\text { sector }-\triangle A X C)=5.43(8)-[10-6.24(9)]=1.69 \text { cao } \\ & \text { M1A1 } \end{aligned}$
		5	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	Gradient, m, of $A B=3 / 4$	B1	
	Equation of $B C$ is $y-4=\frac{-4}{3}(x-3)$	M1A1	Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect
			$\left.y=\frac{-4}{3} x+8\right)$
	$x=6$	$\mathbf{A 1}$	Ignore any y coordinate given.
		4	

Question	Answer	Marks	Guidance
$4(\mathrm{ii})$	$(A C)^{2}=7^{2}+1^{2} \rightarrow A C=7.071$	M1A1	M mark for $\sqrt{(\text { their } 6+/-1)^{2}+1}$.
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
5	$a+(n-1) 3=94$	B1	
	$\frac{n}{2}[2 a+(n-1) 3]=1420 \quad \text { OR } \quad \frac{n}{2}[a+94]=1420$	B1	
	Attempt elimination of a or n	M1	
	$3 n^{2}-191 n+2840(=0) \quad$ OR $\quad a^{2}-3 a-598 \quad(=0)$	A1	3-term quadratic (not necessarily all on the same side)
	$n=40$ (only)	A1	
	$a=-23$ (only)	A1	Award $5 / 6$ if a 2 nd pair of solutions $(71 / 3,26)$ is given in addition or if given as the only answer.
		6	

Question	Answer	Marks	Guidance
6	$(\mathrm{BO})=-8 \mathbf{i}-6 \mathbf{j}$	B1	$\mathrm{OR}(\mathbf{O B})=8 \mathbf{i}+6 \mathbf{j}$
	$(\mathbf{B F})=-6 \mathbf{j}-8 \mathbf{i}+7 \mathbf{k}+4 \mathbf{i}+2 \mathbf{j}=-4 \mathbf{i}-4 \mathbf{j}+7 \mathbf{k}$	B1	$\mathrm{OR}(\mathbf{F B})=4 \mathbf{i}+4 \mathbf{j}-7 \mathbf{k}$
	$(\mathbf{B F . B O})=(-4)(-8)+(-4)(-6)$	M1	OR (FB.OB) Expect 56. Accept one reversed but award final A0
	$\|\mathbf{B F}\| \times\|\mathbf{B O}\|=\sqrt{4^{2}+4^{2}+7^{2}} \times \sqrt{8^{2}+6^{2}}$	M1	Expect 90. At least one magnitude methodically correct
	Angle $O B F=\cos ^{-1}\left(\frac{\text { their } 56}{\text { their } 90}\right)=\cos ^{-1}\left(\frac{56}{90}\right)$ or $\cos ^{-1}\left(\frac{28}{45}\right)$	DM1A1	Or equivalent 'integer' fractions. All M marks dependent on use of $(\pm) \mathbf{B O}$ and $(\pm) \mathbf{B F}$. 3rd M mark dep on both preceding M marks
		6	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	$\frac{(\tan \theta+1)(1-\cos \theta)+(\tan \theta-1)(1+\cos \theta)}{(1+\cos \theta)(1-\cos \theta)}$ soi	M1	
	$\frac{\tan \theta-\tan \theta \cos \theta+1-\cos \theta+\tan \theta-1+\tan \theta \cos \theta-\cos \theta}{1-\cos ^{2} \theta}$	www	A1
	$\frac{2(\tan \theta-\cos \theta)}{\sin ^{2} \theta}$ www	AG	$\mathbf{A 1}$

Question	Answer	Marks	Guidance
7(ii)	$(2)(\tan \theta-\cos \theta)(=0) \rightarrow(2)\left(\frac{\sin \theta}{\cos \theta}-\cos \theta\right)(=0)$ soi	M1	Equate numerator to zero and replace $\tan \theta$ by $\sin \theta / \cos \theta$
	$(2)\left(\sin \theta-\left(1-\sin ^{2} \theta\right)\right)(=0)$	DM1	Multiply by $\cos \theta$ and replace $\cos ^{2} \theta$ by $1-\sin ^{2} \theta$
	$\sin \theta=0.618(0) \quad$ soi	A1	Allow ($\sqrt{ } 5-1$ /2
	$\theta=38.2^{\circ}$	A1	Apply penalty -1 for extra solutions in range
		4	

Question	Answer	Marks	Guidance
8(i)	$y=1 / 3 a x^{3}+1 / 2 b x^{2}-4 x(+c)$	B1	
	$11=0+0+0+c$	M1	Sub $x=0, y=11$ into an integrated expression. c must be present
	$y=1 / 3 a x^{3}+1 / 2 b x^{2}-4 x+11$	A1	
		3	
8(ii)	$4 a+2 b-4=0$	M1	Sub $x=2, d y / d x=0$
	$1 / 3(8 a)+2 b-8+11=3$	M1	Sub $x=2, y=3$ into an integrated expression. Allow if 11 missing
	Solve simultaneous equations	DM1	Dep. on both M marks
	$a=3, b=-4$	A1A1	Allow if no working seen for simultaneous equations
		5	

Question	Answer	Marks	Guidance
9(i)	For their 3-term quad a recognisable application of $b^{2}-4 a c$	M1	Expect $2 x^{2}-x(3+k)+1-k^{2}(=0)$ oe for the 3-term quad.
	$\left(b^{2}-4 a c=\right)(3+k)^{2}-4(2)\left(1-k^{2}\right)$ oe	A1	Must be correct. Ignore any RHS
	$9 k^{2}+6 k+1$	A1	Ignore any RHS
	$(3 k+1)^{2} \geqslant 0$ Do not allow >0. Hence curve and line meet. AG	A1	Allow (9) $\left(k+\frac{1}{3}\right)^{2} \geqslant 0$. Conclusion required.
	ALT Attempt solution of 3-term quadratic	M1	
	Solutions $x=k+1, \quad 1 / 2(1-k)$	A1A1	
	Which exist for all values of k. Hence curve and line meet. AG	A1	
		4	

Question	Answer	Marks	Guidance
9(ii)	$k=-1 / 3$	B1	ALT $\mathrm{d} y / \mathrm{d} x=4 x-3 \Rightarrow 4 x-3=k$
	Sub (one of) their $k=-1 / 3$ into either line $1 \rightarrow 2 x^{2}-\frac{8}{3} x+\frac{8}{9}(=0)$ Or into the derivative of line $1 \rightarrow 4 x-(3+k)(=0)$	M1	Sub $k=4 x-3$ into line $1 \rightarrow 2 x^{2}-x(4 x)+1-(4 x-3)^{2}(=0)$
	$x=2 / 3$ Do not allow unsubstantiated $\left(\frac{2}{3},-\frac{1}{9}\right)$ following $k=-\frac{1}{3}$	A1	$x=2 / 3, y=-1 / 9$ (both required) [from $-18 x^{2}+24 x-8 \quad(=0)$ oe]
	$y=-1 / 9$ Do not allow unsubstantiated $\left(\frac{2}{3},-\frac{1}{9}\right)$ following $k=-\frac{1}{3}$	A1	$k=-1 / 3$
		4	

Question	Answer	Marks	Guidance
$10(\mathrm{i})$	$V=4(\pi) \int(3 x-1)^{-2 / 3} \mathrm{~d} x=4(\pi)\left[\frac{(3 x-1)^{1 / 3}}{1 / 3}\right][\div 3]$	M1A1A1	Recognisable integration of y^{2} (M1) Independent A1, A1 for [][]
	$4(\pi)[2-1]$	DM1	Expect $4(\pi)(3 x-1)^{1 / 3}$
	4π or 12.6	A1	Apply limits $2 / 3 \rightarrow 3$. Some working must be shown.
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
$10($ ii $)$	$\mathrm{d} y / \mathrm{d} x=(-2 / 3)(3 x-1)^{-4 / 3} \times 3$	B1	Expect $-2(3 x-1)^{-4 / 3}$
	When $x=2 / 3, y=2$ soi $\mathrm{d} y / \mathrm{d} x=-2$	B1B1	2nd B1 dep. on correct expression for $\mathrm{d} y / / \mathrm{d} x$
	Equation of normal is $y-2=1 / 2(x-2 / 3)$	M1	Line through $(2 / 3$, their 2$)$ and with grad $-1 / m . ~ D e p ~ o n ~$ diffn
	$y=\frac{1}{2} x+\frac{5}{3}$	A1 from	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
$11(\mathrm{i})$	$[2]\left[(x-3)^{2}\right][-7]$	B1B1B1	
		$\mathbf{3}$	
	Largest value of k is 3 . Allow $(k=) 3$.	B1	Allow $k \leqslant 3$ but not $x \leqslant 3$ as final answer.
		$\mathbf{1}$	

Question	Answer	Marks	Guidance
11(iii)	$y=2(x-3)^{2}-7 \rightarrow(x-3)^{2}=1 / 2(y+7)$ or with x / y transposed	M1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$x=3 \pm \sqrt{1 / 2(y+7)}$ Allow $3+\sqrt{ }$ or $3-\sqrt{ }$ or with x / y transposed	DM1	Ft their a, b, c. Order of operations correct. Allow sign errors
	$\mathrm{f}^{-1}(x)=3-\sqrt{1 / 2(x+7)}$	A1	
	(Domain is x) \geqslant their -7	B1FT	Allow other forms for interval but if variable appears must be x
		4	
11(iv)	$x+3 \leqslant 1$. Allow $x+3=1$	M1	Allow $x+3 \leqslant k$
	largest p is -2. Allow $(p=)-2$	A1	Allow $p \leqslant-2$ but not $x \leqslant-2$ as final answer.
	$\mathrm{fg}(x)=\mathrm{f}(x+3)=2 x^{2}-7$ cao	B1	
		3	

