Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$7C5 x^2 (-2/x)^5$ soi	B1	Can appear in an expansion. Allow 7C2
	21×-32 soi	B1	Identified. Allow $(21x^2) \times (-32x^{-5})$. Implied by correct answer
	-672	B1	Allow $\frac{-672}{x^3}$. If 0/3 scored, 672 scores SCB1
		3	

Question	Answer	Marks	Guidance
2	$f'(x) = 3x^2 + 4x - 4$	B1	
	Factors or crit. values or sub any 2 values $(x \neq -2)$ into $f'(x)$ soi	M1	Expect $(x+2)(3x-2)$ or $-2, \frac{2}{3}$ or any 2 subs (excluding $x = -2$).
	For $-2 < x < \frac{2}{3}$, $f'(x) < 0$; for $x > \frac{2}{3}$, $f'(x) > 0$ soi Allow \leq , \geq	M1	Or at least 1 specific value $(\neq -2)$ in each interval giving opp signs Or f' $(\frac{2}{3})=0$ and f'' $(\frac{2}{3})\neq 0$ (i.e. gradient changes sign at $x = \frac{2}{3}$)
	Neither www	A1	Must have 'Neither'
	ALT 1 At least 3 values of $f(x)$	M 1	e.g. $f(0) = 7$, $f(1) = 6$, $f(2) = 15$
	At least 3 correct values of $f(x)$	A1	
	At least 3 <u>correct</u> values of $f(x)$ spanning $x = \frac{2}{3}$	A1	
	Shows a decreasing and then increasing pattern. Neither www	A1	Or similar wording. Must have 'Neither'
	ALT 2 f'(x) = $3x^2 + 4x - 4 = 3(x + \frac{2}{3})^2 - \frac{16}{3}$	B1B1	Do not condone sign errors
	$f'(x) \ge -\frac{16}{3}$	M1	
	f'(x) < 0 for some values and > 0 for other values. Neither www	A1	Or similar wording. Must have 'Neither'
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	0.8 oe	B1	
		1	
3(ii)	$BD = 5\sin their 0.8$	M1	Expect 3.58(7). Methods using degrees are acceptable
	$DC = 5 - 5\cos their \ 0.8$	M1	Expect 1.51(6)
	Sector = $\frac{1}{2} \times 5^2 \times their 0.8$ OR Seg = $\frac{1}{2} \times 5^2 \times [their 0.8 - sintheir 0.8]$	M1	Expect 10 for sector. Expect 1.03(3) for segment
	Trap = $\frac{1}{2}(5 + theirDC) \times theirBD$ oe OR $\triangle BDC = \frac{1}{2}theirBD \times theirCD$	M1	OR (for last 2 marks) if <i>X</i> is on <i>AB</i> and <i>XC</i> is parallel to <i>BD</i> :
	Shaded area = $11.69 - 10 \text{ OR } 2.71(9) - 1.03(3) = 1.69 \text{ cao}$	A1	$BDCX$ –(sector – ΔAXC) = 5.43(8) – [10 – 6.24(9)] = 1.69 cao M1A1
		5	

Question	Answer	Marks	Guidance
4(i)	Gradient, <i>m</i> , of $AB = 3/4$	B1	
	Equation of <i>BC</i> is $y-4 = \frac{-4}{3}(x-3)$	M1A1	Line through (3, 4) with gradient $\frac{-1}{m}$ (M1). (Expect $y = \frac{-4}{3}x + 8$)
	<i>x</i> = 6	A1	Ignore any <i>y</i> coordinate given.
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
4(ii)	$(AC)^2 = 7^2 + 1^2 \rightarrow AC = 7.071$	M1A1	M mark for $\sqrt{(their 6 + / -1)^2 + 1}$.
		2	

Question	Answer	Marks	Guidance
5	a + (n-1)3 = 94	B1	
	$\frac{n}{2} [2a + (n-1)3] = 1420$ OR $\frac{n}{2} [a + 94] = 1420$	B1	
	Attempt elimination of a or n	M1	
	$3n^2 - 191n + 2840 (= 0)$ OR $a^2 - 3a - 598 (= 0)$	A1	3-term quadratic (not necessarily all on the same side)
	n = 40 (only)	A1	
	a = -23 (only)	A1	Award 5/6 if a 2nd pair of solutions (71/3, 26) is given in addition or if given as the only answer.
		6	

October/November 2018

Question	Answer	Marks	Guidance
6	$(\mathbf{BO}) = -8\mathbf{i} - 6\mathbf{j}$	B1	OR (OB) = 8i + 6j
	$(\mathbf{BF}) = -6\mathbf{j} - 8\mathbf{i} + 7\mathbf{k} + 4\mathbf{i} + 2\mathbf{j} = -4\mathbf{i} - 4\mathbf{j} + 7\mathbf{k}$	B1	OR (FB) = 4i + 4j - 7k
	$(\mathbf{BF.BO}) = (-4)(-8) + (-4)(-6)$	M1	OR (FB.OB) Expect 56. Accept one reversed but award final A0
	$ \mathbf{BF} \times \mathbf{BO} = \sqrt{4^2 + 4^2 + 7^2} \times \sqrt{8^2 + 6^2}$	M1	Expect 90. At least one magnitude methodically correct
	Angle $OBF = \cos^{-1}\left(\frac{their56}{their90}\right) = \cos^{-1}\left(\frac{56}{90}\right) \operatorname{or} \cos^{-1}\left(\frac{28}{45}\right)$	DM1A1	Or equivalent 'integer' fractions. All M marks dependent on use of (\pm) BO and (\pm) BF . 3rd M mark dep on both preceding M marks
		6	

Question	Answer	Marks	Guidance
7(i)	$\frac{(\tan\theta+1)(1-\cos\theta)+(\tan\theta-1)(1+\cos\theta)}{(1+\cos\theta)(1-\cos\theta)}$ soi	M1	
	$\frac{\tan\theta - \tan\theta\cos\theta + 1 - \cos\theta + \tan\theta - 1 + \tan\theta\cos\theta - \cos\theta}{1 - \cos^2\theta} \text{www}$	A1	
	$\frac{2(\tan\theta - \cos\theta)}{\sin^2\theta} \text{ www} \qquad \mathbf{AG}$	A1	
		3	

Question	Answer	Marks	Guidance
7(ii)	$(2)(\tan\theta - \cos\theta) (=0) \rightarrow (2) \left(\frac{\sin\theta}{\cos\theta} - \cos\theta\right) (=0)$ soi	M1	Equate numerator to zero and replace $\tan \theta \operatorname{by} \sin \theta / \cos \theta$
	$(2)\left(\sin\theta - \left(1 - \sin^2\theta\right)\right) \ (=0)$	DM1	Multiply by $\cos\theta$ and replace $\cos^2\theta$ by $1 - \sin^2\theta$
	$\sin\theta = 0.618(0) \qquad \text{soi}$	A1	Allow $(\sqrt{5}-1)/2$
	$\theta = 38.2^{\circ}$	A1	Apply penalty –1 for extra solutions in range
		4	

Question	Answer	Marks	Guidance
8(i)	$y = \frac{1}{3} ax^3 + \frac{1}{2}bx^2 - 4x (+c)$	B1	
	11 = 0 + 0 + 0 + c	M1	Sub $x = 0$, $y = 11$ into an integrated expression. <i>c</i> must be present
	$y = \frac{1}{3}ax^3 + \frac{1}{2}bx^2 - 4x + 11$	A1	
		3	
8(ii)	4a + 2b - 4 = 0	M1	Sub $x = 2$, $dy / dx = 0$
	$y'_{3}(8a) + 2b - 8 + 11 = 3$	M1	Sub $x = 2$, $y = 3$ into an integrated expression. Allow if 11 missing
	Solve simultaneous equations	DM1	Dep. on both M marks
	a = 3, b = -4	A1A1	Allow if no working seen for simultaneous equations
		5	

October/November 2018

Question	Answer	Marks	Guidance
9(i)	For <i>their</i> 3-term quad a recognisable application of $b^2 - 4ac$	M1	Expect $2x^2 - x(3+k) + 1 - k^2$ (=0) or for the 3-term quad.
	$(b^2 - 4ac =) (3+k)^2 - 4(2)(1-k^2)$ oe	A1	Must be correct. Ignore any RHS
	$9k^2 + 6k + 1$	A1	Ignore any RHS
	$(3k+1)^2 \ge 0$ Do not allow > 0. Hence curve and line meet. AG	A1	Allow $(9)\left(k+\frac{1}{3}\right)^2 \ge 0$. Conclusion required.
	ALT Attempt solution of 3-term quadratic	M1	
	Solutions $x = k + 1$, $\frac{1}{2}(1-k)$	A1A1	
	Which exist for all values of <i>k</i> . Hence curve and line meet. AG	A1	
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

9709_w18_ms_13

Question	Answer	Marks	Guidance
9(ii)	k = -1/3	B 1	ALT dy / dx = $4x - 3 \Rightarrow 4x - 3 = k$
	Sub (one of) <i>their</i> $k = -\frac{1}{3}$ into either line $1 \rightarrow 2x^2 - \frac{8}{3}x + \frac{8}{9}(=0)$	M1	Sub $k = 4x - 3$ into line $1 \rightarrow 2x^2 - x(4x) + 1 - (4x - 3)^2 (= 0)$
	Or into the derivative of line $1 \rightarrow 4x - (3+k)(=0)$		
	$x = 2/3$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	$x = 2/3, y = -1/9$ (both required) [from $-18x^2 + 24x - 8$ (=0) oe]
	$y = -1/9$ Do not allow unsubstantiated $\left(\frac{2}{3}, -\frac{1}{9}\right)$ following $k = -\frac{1}{3}$	A1	k = -1/3
		4	

Question	Answer	Marks	Guidance
10(i)	$V = 4(\pi) \int (3x-1)^{-2/3} dx = 4(\pi) \left[\frac{(3x-1)^{1/3}}{1/3} \right] [\div 3]$	M1A1A1	Recognisable integration of y^2 (M1) Independent A1, A1 for [][]
	$4(\pi)[2-1]$	DM1	Expect $4(\pi)(3x-1)^{\frac{1}{3}}$
	4π or 12.6	A1	Apply limits $\frac{2}{3} \rightarrow 3$. Some working must be shown.
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

October/November 2018

Question	Answer	Marks	Guidance
10(ii)	$dy / dx = (-2/3)(3x-1)^{-4/3} \times 3$	B1	Expect $-2(3x-1)^{-4/3}$
	When $x = 2/3$, $y = 2$ soi $dy/dx = -2$	B1B1	2nd B1 dep. on correct expression for $dy//dx$
	Equation of normal is $y - 2 = \frac{1}{2}(x - \frac{2}{3})$	M1	Line through $(\frac{2}{3}, their 2)$ and with grad $-1/m$. Dep on <i>m</i> from diffn
	$y = \frac{1}{2}x + \frac{5}{3}$	A1	
		5	

Question	Answer	Marks	Guidance
11(i)	$[2]\left[\left(x-3\right)^2\right]\left[-7\right]$	B1B1B1	
		3	
11(ii)	Largest value of k is 3. Allow ($k = $) 3.	B1	Allow $k \leq 3$ but not $x \leq 3$ as final answer.
		1	

October/November 2018

9709_w18_ms_13

Question	Answer	Marks	Guidance
11(iii)	$y = 2(x-3)^2 - 7 \rightarrow (x-3)^2 = \frac{1}{2}(y+7)$ or with x/y transposed	M1	Ft <i>their a</i> , <i>b</i> , <i>c</i> . Order of operations correct. Allow sign errors
	$x = 3 \pm \sqrt{\frac{1}{2}(y+7)}$ Allow $3 + \sqrt{1}$ or $3 - \sqrt{1}$ or with x/y transposed	DM1	Ft <i>their a</i> , <i>b</i> , <i>c</i> . Order of operations correct. Allow sign errors
	$f^{-1}(x) = 3 - \sqrt{\frac{1}{2}(x+7)}$	A1	
	(Domain is x) \geq their – 7	B1FT	Allow other forms for interval but if variable appears must be <i>x</i>
		4	
11(iv)	$x+3 \leq 1$. Allow $x+3=1$	M1	Allow $x + 3 \leq k$
	largest p is -2 . Allow ($p =$) -2	A1	Allow $p \leq -2$ but not $x \leq -2$ as final answer.
	$fg(x) = f(x+3) = 2x^2 - 7$ cao	B1	
		3	