Question	Answer	Marks	Guidance
1	For a correctly selected term in $\frac{1}{x^{2}}:(3 x)^{4}$ or 3^{4}	B1	Components of coefficient added together $0 / 4$ B1 expect 81
	$\times\left(\frac{2}{3 x^{2}}\right)^{3}$ or $(2 / 3)^{3}$	B1	B1 expect $8 / 27$
	$\times{ }_{7} \mathrm{C}_{3}$ or ${ }_{7} \mathrm{C}_{4}$	B1	B1 expect 35
	$\rightarrow \mathbf{8 4 0}$ or $\frac{840}{\boldsymbol{x}^{2}}$	B1	All of the first three marks can be scored if the correct term is seen in an expansion and it is selected but then wrongly simplified.
			SC: A completely correct unsimplified term seen in an expansion but not correctly selected can be awarded B2.
		4	

Question	Answer	Marks	Guidance
2	$\text { Integrate } \rightarrow \frac{x^{\frac{3}{2}}}{\frac{3}{2}}+2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}(+\mathrm{C})$	B1 B1	B1 for each term correct - allow unsimplified. C not required.
	$\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}+2 \frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{4} \rightarrow \frac{40}{3}-\frac{14}{3}$	M1	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1 .
	$=\frac{26}{3} \mathbf{o e}$	A1	Allow 8.67 awrt. No integrand implies use of integration function on calculator $0 / 4$. Beware a correct answer from wrong working.
		4	

Question	Answer	Marks	Guidance
3 (i)	P is $(\boldsymbol{t}, \mathbf{5} \boldsymbol{t}) Q$ is $\left(\boldsymbol{t}, \boldsymbol{t}\left(\mathbf{9}-\boldsymbol{t}^{2}\right)\right) \rightarrow \mathbf{4 t - \boldsymbol { t } ^ { 3 }}$	B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for $P Q$ allow $\left\|4 \boldsymbol{t}-\boldsymbol{t}^{3}\right\|$ or $\left\|\boldsymbol{t}^{3}-4 \boldsymbol{t}\right\|$. Note: $4 x-x^{3}$ from equating line and curve $0 / 2$ even if x then replaced by t.
		$[2]$	

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d}(P Q)}{\mathrm{d} t}=4-3 t^{2}$	B1FT	B1FT for differentiation of their $P Q$, which MUST be a cubic expression, but can be $\frac{d}{d x} f(x)$ from (i) but not the equation of the curve.
	$=0 \rightarrow t=+\frac{2}{\sqrt{3}}$	M1	Setting their differential of $P Q$ to 0 and attempt to solve for t or x.
	\rightarrow Maximum $P Q=\frac{16}{3 \sqrt{ } 3}$ or $\frac{16 \sqrt{3}}{9}$	A1	Allow 3.08 awrt. If answer comes from wrong method in (i) award A0. Correct answer from correct expression by T\&I scores $3 / 3$.
		3	

Question	Answer	Marks	Guidance
4(i)	$f g(x)=2-3 \cos \left(\frac{1}{2} x\right)$	B1	Correct $f g$
	$2-3 \cos \left(\frac{1}{2} x\right)=1 \rightarrow \cos \left(\frac{1}{2} x\right)=\frac{1}{3} \rightarrow\left(\frac{1}{2} x\right)=\cos ^{-1}\left(\right.$ their $\left.\frac{1}{3}\right)$	M1	M1 for correct order of operations to solve their $f g(\mathrm{x})=1$ as far as using inverse cos expect 1.23 , (or 70.5°) condone $x=$.
	$\boldsymbol{x}=2.46$ awrt or $\frac{4.7 \pi}{6}(0.784 \pi$ awrt $)$	A1	One solution only in the given range, ignore answers outside the range. Answer in degrees A0.
			Alternative: Solve $f(y)=1 \rightarrow \mathrm{y}=1.23 \rightarrow \frac{1}{2} x=1.23$ B1M1 $\rightarrow x=2.46 \mathrm{A1}$
		3	

Question	Answer	Marks	Guidance
4(ii)		B1	One cycle of \pm cos curve, evidence of turning at the ends not required at this stage. Can be a poor curve but not an inverted "V". If horizontal axis is not labelled mark everything to the right of the vertical axis. If axis is clearly labelled mark $0 \rightarrow$ 2π.
		B1	Start and finish at roughly the same negative y value. Significantly more above the x axis than below or correct range implied by labels .
		Fully correct. Curves not lines. Must be a reasonable curve clearly turning at both ends. Labels not required but must be appropriate if present.	

Question	Answer	Marks	Guidance
5(i)	From the AP: $x-4=y-x$	B1	Or equivalent statement e.g. $y=2 x-4$ or $x=\frac{y+4}{2}$.
	From the GP: $\frac{y}{x}=\frac{18}{y}$	B1	Or equivalent statement e.g. $y^{2}=18 x$ or $x=\frac{y^{2}}{18}$.
	Simultaneous equations: $y^{2}-9 y-36=0$ or $2 x^{2}-17 x+8=0$	M1	Elimination of either x or y to give a three term quadratic (=0)
	OR		
	$4+d=x, 4+2 d=y \rightarrow \frac{4+2 d}{4+d}=r \text { oe }$	B1	
	$(4+d)\left(\frac{4+2 d}{4+d}\right)^{2}=18 \rightarrow 2 d^{2}-d-28=0$	M1	Uses $\mathrm{ar}^{2}=18$ to give a three term quadratic $(=0)$
	$d=4$	B1	Condone inclusion of $d=\frac{-7}{2}$ oe

Question	Answer	Marks	Guidance
5(i)	OR		
	From the GP $\frac{y}{x}=\frac{18}{y}$	B1	
	$\rightarrow x=\frac{y^{2}}{18} \rightarrow 4+d=\frac{y^{2}}{18} \rightarrow d=\frac{y^{2}}{18}-4$	B1	
	$4+2\left(\frac{y^{2}}{18}-4\right)=y \rightarrow y^{2}-9 y-36=0$	M1	
	$x=8, y=12$.	A1	Needs both x and y. Condone $\left(\frac{1}{2},-3\right)$ included in final answer. Fully correct answer www 4/4.
		4	
5(ii)	AP 4th term $=16$	B1	Condone inclusion of $\frac{-13}{2}$ oe
	$\text { GP 4th term }=8 \times\left(\frac{12}{8}\right)^{3}$	M1	A valid method using their x and y from (i).
	$=27$	A1	Condone inclusion of -108
			Note: Answers from fortuitous $x=8, y=12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x=8, y=12$ to be credited with appropriate marks.
		3	

Question	Answer	Marks	Guidance
6 (i)	In $\triangle A B D, \tan \theta=\frac{9}{B D} \rightarrow B D=\frac{9}{\tan \theta}$ or $9 \tan (90-\theta)$ or $9 \cot \theta$ or $\sqrt{\left[(20 \tan \theta)^{2}-9^{2}\right]}$ (Pythag) or $\frac{9 \sin (90-\theta)}{\sin \theta}$ (Sine rule)	B1	Both marks can be gained for correct equated expressions.
	$\text { In } \triangle D B C, \sin \theta=\frac{B D}{20} \rightarrow B D=20 \sin \theta$	B1	
	$20 \sin \theta=\frac{9}{\tan \theta}$	M1	Equates their expressions for BD and uses $\sin \theta / \cos \theta=\tan \theta$ or $\cos \theta / \sin \theta=\cot \theta$ if necessary.
	$\rightarrow \mathbf{2 0} \sin ^{2} \theta=9 \cos \theta \mathrm{AG}$	A1	Correct manipulation of their expression to arrive at given answer.
			SC: In $\triangle D B C, \sin \theta=\frac{B D}{20} \rightarrow B D=20 \sin \theta \quad \mathrm{~B} 1$ In $\triangle A B D, B A=\frac{9}{\sin \theta}$ and $\cos \theta=\frac{B D}{B A}$ $\begin{aligned} \cos \theta & =\frac{20 \sin \theta}{9 / \sin \theta} \rightarrow \cos \theta=\frac{20 \sin ^{2} \theta}{9} \\ & \rightarrow \mathbf{2 0} \sin ^{2} \theta=\mathbf{9} \cos \theta \end{aligned}$
		4	
6(ii)	Uses $\mathrm{s}^{2}+\mathrm{c}^{2}=1 \rightarrow 20 \cos ^{2} \theta+9 \cos \theta-20(=0)$	M1	Uses $\mathrm{s}^{2}+\mathrm{c}^{2}=1$ to form a three term quadratic in $\cos \theta$
	$\rightarrow \cos \theta=0.8$	A1	www
	$\rightarrow \theta=36.9^{\circ}$ awrt	A1	www. Allow 0.644^{c} awrt. Ignore 323.1° or 2.50^{c}. Note: correct answer without working scores $0 / 3$.
		3	

Question	Answer	Marks	Guidance
7	$\overrightarrow{P N}=8 \mathbf{i}-8 \mathbf{k}$	B1	
	$\overrightarrow{P M}=4 \mathbf{i}+4 \mathbf{j}-6 \mathbf{k}$	B2,1,0	Loses 1 mark for each component incorrect
			$\mathbf{S C}: \overrightarrow{P N}=-8 \mathbf{i}+8 \mathbf{k}$ and $\overrightarrow{P M}=-4 \mathbf{i}-4 \mathbf{j}+6 \mathbf{k}$ scores $2 / 3$.
	$\overrightarrow{P N} \cdot \overrightarrow{P M}=32+0+48=80$	M1	Evaluates $x_{1} x_{2}+y_{1} y_{2}+z_{1} z_{2}$ for correct vectors or one or both reversed.
	$\|P N\| \times\|P M\|=\sqrt{ } 128 \times \sqrt{ } 68(=16 \sqrt{34})$	M1	Product of their moduli - may be seen in cosine rule
	$\sqrt{ } 128 \times \sqrt{ } 68 \cos M \hat{P} N=80$	M1	All linked correctly.
	Angle $M \hat{P} N=31.0^{\circ}$ awrt	A1	Answer must come directly from + ve cosine ratio. Cosine rule not accepted as a complete method. Allow 0.540^{c} awrt. Note: Correct answer from incorrect vectors scores A0 (XP)
		7	

Question	Answer	Marks	Guidance
8(i)	$A \hat{B} C$ using cosine rule giving $\cos ^{-1}\left(\frac{-1}{8}\right)$ or $2 \sin ^{-1}(3 / 4)$ or $2 \cos ^{-1}\left(\frac{\sqrt{7}}{2}\right)$ or $B \hat{A} C=\cos ^{-1}(3 / 4)$ or $B \hat{A} C=\sin ^{-1} \frac{\sqrt{7}}{4}$ or $B \hat{A} C=\tan ^{-1} \frac{\sqrt{7}}{3}$	M1	Correct method for $A \hat{B} C$, expect $1.696^{\text {c awrt }}$ Or for $B \hat{A} C$, expect $0.723^{\mathrm{c}} \mathrm{awrt}$
	$C \hat{B} Y=\pi-A \hat{B} C$ or $2 \times C \hat{A} B$	M1	For attempt at $C \hat{B} Y=\pi-A \hat{B} C$ or $C \hat{B} Y=2 \times C \hat{A} B$
	OR		
	Find $C Y$ from $\triangle A C Y$ using Pythagoras or similar $\Delta \mathrm{s}$	M1	Expect $4 \sqrt{7}$
	$C \hat{B} Y=\cos ^{-1}\left(\frac{8^{2}+8^{2}-(\text { their } C Y)^{2}}{2 \times 8 \times 8}\right)$	M1	Correct use of cosine rule
	$C \hat{B} Y=1.445^{\text {c }} \mathrm{AG}$	A1	Numerical values for angles in radians, if given, need to be correct to 3 decimal places. Method marks can be awarded for working in degrees. Need 82.8° awrt converted to radians for A1. Identification of angles must be consistent for A1.
		3	
8(ii)	Arc $C Y=8 \times 1.445$	B1	Use of $s=8 \theta$ for arc $C Y$, Expect 11.56
	$B \hat{A} C=1 / 2(\pi-A \hat{B} C)$ or $\cos ^{-1}(3 / 4)$	*M1	For a valid attempt at $B \hat{A} C$, may be from (i). Expect $0.7227^{\text {c }}$
	Arc $X C=12 \times($ their $B \hat{A} C)$	DM1	Expect 8.673
	Perimeter $=11.56+8.673+4=\mathbf{2 4 . 2} \mathbf{~ c m ~ a w r t ~ w w w ~}$	A1	Omission of ' +4 ' only penalised here.
		4	

Question	Answer	Marks	Guidance
9(i)	$2 x^{2}-12 x+7=2(x-3)^{2}-11$	B1 B1	Mark full expression if present: B1 for $2(x-3)^{2}$ and B1 for -11 . If no clear expression award $a=-3$ and $b=-11$.
		2	
9(ii)	Range (of f or y$) \geqslant{ }^{\text {'their - 11 }}$ '	B1FT	FT for their ' b ' or start again. Condone $>$. Do NOT accept $x>$ or \geqslant
		1	
9(iii)	$(k=)$-"their a" also allow \boldsymbol{x} or $\boldsymbol{k} \leqslant 3$	B1FT	FT for their " a " or start again using $\frac{d y}{d x}=0$. Do NOT accept $\boldsymbol{x}=3$.
		1	
9(iv)	$\begin{aligned} & y=2(x-3)^{2}-11 \rightarrow y+11=2(x-3)^{2} \\ & \frac{y+11}{2}=(x-3)^{2} \end{aligned}$	*M1	Isolating their $(x-3)^{2}$, condone -11 .
	$x=3+\sqrt{\left(\frac{y+11}{2}\right)}$ or $3-\sqrt{\left(\frac{y+11}{2}\right)}$	DM1	Other operations in correct order, allow \pm at this stage. Condone - 3 .
	$\left(\mathrm{g}^{-1}(x) \text { or } \mathrm{y}\right)=3-\sqrt{\left(\frac{x+11}{2}\right)}$	A1	needs ' - '. x and y could be interchanged at the start.
		3	

Question	Answer	Marks	Guidance
10(i)	$2 x+\frac{12}{x}=k-x$ or $y=2(k-y)+\frac{12}{k-y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3 x^{2}-k x+12$ or $3 \mathrm{y}^{2}-5 \mathrm{ky}+\left(2 \mathrm{k}^{2}+12\right)(=0)$
	Use of $b^{2}-4 a c \rightarrow k^{2}-144<0$	DM1	Using the discriminant, allow \leqslant, $=0$; expect 12 and -12
	- $12<k<12$	A1	Do NOT accept \leqslant. Separate statements OK.
		3	
10(ii)	Using $k=15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3 x^{2}-15 x+12$ or $3 y^{2}-75 y+462$ (=0)
	$x=1,4$ or $y=11,14$	A1	Either pair of x or y values correct..
	$(1,14)$ and $(4,11)$	A1	Both pairs of coordinates
		3	
10(iii)	Gradient of $A B=-1 \rightarrow$ Perpendicular gradient $=+1$	B1FT	Use of $m_{1} m_{2}=-1$ to give +1 or ft from their A and B.
	Finding their midpoint using their $(1,14)$ and $(4,11)$	M1	Expect ($2112,12^{1 ⁄ 2}$)
	Equation: $\boldsymbol{y}-1 \mathbf{2}^{1 / 2}=\left(\boldsymbol{x}-\mathbf{2 1}^{1 / 2}\right)[y=x+10]$	A1	Accept correct unsimplified and isw
		3	

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\left[\frac{3}{2} \times(4 x+1)^{-\frac{1}{2}}\right][\times 4][-2]\left(\frac{6}{\sqrt{4 x+1}}-2\right)$	B2,1,0	Looking for 3 components
	$\begin{aligned} & \int y \mathrm{~d} x=\left[3(4 x+1)^{\frac{3}{2}} \div \frac{3}{2}\right][\div 4]\left[-\frac{2 x^{2}}{2}\right](+\mathrm{C}) \\ & \left(=\frac{(4 x+1)^{\frac{3}{2}}}{2}-x^{2}\right) \end{aligned}$	B1 B1 B1	B1 for $3(4 x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for ' $\div 4$ '. B1 for ' $-\frac{2 x^{2}}{2}$, Ignore omission of +C . If included isw any attempt at evaluating.
		5	
11(ii)	$\text { At } M, \frac{\mathrm{~d} y}{\mathrm{~d} x}=0 \rightarrow \frac{6}{\sqrt{4 x+1}}=2$	M1	Sets their 2 term $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 and attempts to solve (as far as $x=\mathrm{k}$)
	$x=2, y=5$	A1 A1	
		3	

Question	Answer	Marks	Guidance
11(iii)	Area under the curve $=\left[\frac{1}{2}(4 x+1)^{\frac{3}{2}}-x^{2}\right]_{0}^{2}$	M1	Uses their integral and their ' 2 ' and 0 correctly
	$(13.5-4)-0.5$ or $9.5-0.5=9$	A1	No working implies use of integration function on calculator M0A0.
	Area under the chord $=$ trapezium $=1 / 2 \times 2 \times(3+5)=8$ Or $\left[\frac{x^{2}}{2}+3 x\right]_{0}^{2}=8$	M1	Either using the area of a trapezium with their 2,3 and 5 or $\int($ their $x+3) d x$ using their ' 2 ' and 0 correctly.
	$($ Shaded area $=9-8)=\mathbf{1}$	A1	Dependent on both method marks,
	OR Area between the chord and the curve is:		
	$\begin{aligned} & \int_{0}^{2} 3 \sqrt{4 x+1}-2 x-(x+3) d x \\ & =\int_{0}^{2} 3 \sqrt{4 x+1}-3 x-3 d x \end{aligned}$	M1	Subtracts their line from given curve and uses their ' 2 ' and 0 correctly.
	$=3\left[\frac{1}{6}(4 x+1)^{\frac{3}{2}}-\frac{x^{2}}{2}-x\right]_{0}^{2}$	A1	All integration correct and limits 2 and 0.
	$=3\left\{\left(\frac{27}{6}-2-2\right)-\left(\frac{1}{6}\right)\right\}$	M1	Evidence of substituting their ' 2 ' and 0 into their integral.
	$=3\left\{\frac{1}{2}-\frac{1}{6}\right\}=3\left\{\frac{1}{3}\right\}=1$	A1	No working implies use of a calculator M0A0.
		[4]	

