October/November 2018

Question	Answer	Marks	Guidance
1	For a correctly selected term in $\frac{1}{x^2}$: $(3x)^4$ or 3^4	B1	Components of coefficient added together 0/4 B1 expect 81
	$\times \left(\frac{2}{3x^2}\right)^3$ or $(2/3)^3$	B1	B1 expect 8/27
	\times ₇ C ₃ or ₇ C ₄	B1	B1 expect 35
	$\rightarrow 840 \text{ or } \frac{840}{x^2}$	B1	All of the first three marks can be scored if the correct term is seen in an expansion and it is selected but then wrongly simplified.
			SC: A completely correct unsimplified term seen in an expansion but not correctly selected can be awarded B2.
		4	

9709/12	
---------	--

Question	Answer	Marks	Guidance
2	Integrate $\rightarrow \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}$ (+C)	B1 B1	B1 for each term correct – allow unsimplified. C not required.
	$\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} + 2\frac{x^{\frac{1}{2}}}{\frac{1}{2}}\right]_{1}^{4} \rightarrow \frac{40}{3} - \frac{14}{3}$	M1	Evidence of 4 and 1 used correctly in their integrand ie at least one power increased by 1.
	$=\frac{26}{3}$ oe	A1	Allow 8.67 awrt. No integrand implies use of integration function on calculator 0/4. Beware a correct answer from wrong working.
		4	

Question	Answer	Marks	Guidance
3(i)	<i>P</i> is (<i>t</i> , 5 <i>t</i>) <i>Q</i> is (<i>t</i> , <i>t</i> (9 − t^2)) → 4 <i>t</i> − t^3	B1 B1	B1 for both y coordinates which can be implied by subsequent working. B1 for PQ allow $ 4t - t^3 $ or $ t^3 - 4t $. Note: $4x - x^3$ from equating line and curve 0/2 even if x then replaced by t.
		[2]	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
3(ii)	$\frac{\mathrm{d}(PQ)}{\mathrm{d}t} = 4 - 3t^2$	B1FT	B1FT for differentiation of their <i>PQ</i> , which MUST be a cubic expression, but can be $\frac{d}{dx}f(x)$ from (i) but not the equation of the curve.
	$= 0 \longrightarrow t = + \frac{2}{\sqrt{3}}$	M1	Setting their differential of PQ to 0 and attempt to solve for t or x .
	\rightarrow Maximum $PQ = \frac{16}{3\sqrt{3}}$ or $\frac{16\sqrt{3}}{9}$	A1	Allow 3.08 awrt. If answer comes from wrong method in (i) award A0. Correct answer from correct expression by T&I scores 3/3.
		3	

Question	Answer	Marks	Guidance
4(i)	$fg(x) = 2 - 3\cos(\frac{1}{2}x)$	B1	Correct fg
	$2 - 3\cos(\frac{1}{2}x) = 1 \longrightarrow \cos(\frac{1}{2}x) = \frac{1}{3} \longrightarrow \left(\frac{1}{2}x\right) = \cos^{-1}\left(their\frac{1}{3}\right)$	M1	M1 for correct order of operations to solve their $fg(x) = 1$ as far as using inverse cos expect 1.23, (or 70.5°) condone $x =$.
	$x = 2.46 \text{ awrt or } \frac{4.7\pi}{6} (0.784\pi \text{ awrt})$	A1	One solution only in the given range, ignore answers outside the range. Answer in degrees A0.
			Alternative: Solve $f(y) = 1 \rightarrow y = 1.23 \rightarrow \frac{1}{2}x = 1.23$ B1M1 $\rightarrow x = 2.46$ A1
		3	$\rightarrow \lambda - 2.40$ At

October/November 2018

Question	Answer	Marks	Guidance
4(ii)		B1	One cycle of \pm cos curve, evidence of turning at the ends not required at this stage. Can be a poor curve but not an inverted "V". If horizontal axis is not labelled mark everything to the right of the vertical axis. If axis is clearly labelled mark $0 \rightarrow 2\pi$.
		B1	Start and finish at roughly the same negative y value. Significantly more above the x axis than below or correct range implied by labels .
		B1	Fully correct. Curves not lines. Must be a reasonable curve clearly turning at both ends. Labels not required but must be appropriate if present.
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
5(i)	From the AP: $x - 4 = y - x$	B1	Or equivalent statement e.g. $y = 2x - 4$ or $x = \frac{y+4}{2}$.
	From the GP: $\frac{y}{x} = \frac{18}{y}$	B1	Or equivalent statement e.g. $y^2 = 18x$ or $x = \frac{y^2}{18}$.
	Simultaneous equations: $y^2 - 9y - 36 = 0$ or $2x^2 - 17x + 8 = 0$	M1	Elimination of either x or y to give a three term quadratic $(= 0)$
	OR		
	$4+d = x, 4+2d = y \rightarrow \frac{4+2d}{4+d} = r$ oe	B1	
	$(4+d)\left(\frac{4+2d}{4+d}\right)^2 = 18 \rightarrow 2d^2 - d - 28 = 0$	M1	Uses $ar^2 = 18$ to give a three term quadratic (= 0)
	<i>d</i> = 4	B1	Condone inclusion of $d = \frac{-7}{2}$ oe

October/November 2018

9709	w18	ms	12

Question	American	Marks	Guidance
Question	Answer	Marks	Guidance
5(i)	OR		
	From the GP $\frac{y}{x} = \frac{18}{y}$	B1	
		B1	
	$ \rightarrow x = \frac{y^2}{18} \rightarrow 4 + d = \frac{y^2}{18} \rightarrow d = \frac{y^2}{18} - 4 $	DI	
	$4 + 2\left(\frac{y^2}{18} - 4\right) = y \rightarrow y^2 - 9y - 36 = 0$	M1	
	x = 8, y = 12.	A1	Needs both <i>x</i> and <i>y</i> . Condone $\left(\frac{1}{2}, -3\right)$ included in final
			answer. Fully correct answer www 4/4.
		4	
5(ii)	AP 4th term = 16	B1	Condone inclusion of $\frac{-13}{2}$ oe
	GP 4th term = $8 \times \left(\frac{12}{8}\right)^3$	M1	A valid method using their <i>x</i> and <i>y</i> from (i).
	= 27	A1	Condone inclusion of –108
			Note: Answers from fortuitous $x = 8$, $y = 12$ in (i) can only score M1. Unidentified correct answer(s) with no working seen after valid $x = 8$, $y = 12$ to be credited with appropriate marks.
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
6(i)	In ΔABD , $\tan\theta = \frac{9}{BD} \rightarrow BD = \frac{9}{\tan\theta}$ or $9\tan(90 - \theta)$ or $9\cot\theta$ or $\sqrt{\left[\left(20 \ \tan\theta\right)^2 - 9^2\right]}$ (Pythag) or $\frac{9\sin(90 - \theta)}{\sin\theta}$ (Sine rule)	B1	Both marks can be gained for correct equated expressions.
	In $\triangle DBC$, $\sin \theta = \frac{BD}{20} \rightarrow BD = 20\sin\theta$	B1	
	$20\sin\theta = \frac{9}{\tan\theta}$	M1	Equates their expressions for BD and uses $\sin\theta/\cos\theta = \tan\theta$ or $\cos\theta/\sin\theta = \cot\theta$ if necessary.
	$\rightarrow 20 \sin^2 \theta = 9 \cos \theta AG$	A1	Correct manipulation of their expression to arrive at given answer.
			SC: In $\triangle DBC$, $\sin\theta = \frac{BD}{20} \rightarrow BD = 20\sin\theta$ B1 In $\triangle ABD$, $BA = \frac{9}{\sin\theta}$ and $\cos\theta = \frac{BD}{BA}$
			$\cos\theta = \frac{20\sin\theta}{9/\sin\theta} \rightarrow \cos\theta = \frac{20\sin^2\theta}{9} \qquad M1$ $\rightarrow 20\sin^2\theta = 9\cos\theta \qquad A1 \text{ Scores } 3/4$
		4	
6(ii)	Uses $s^2 + c^2 = 1 \rightarrow 20\cos^2\theta + 9\cos\theta - 20 \ (= 0)$	M1	Uses $s^2 + c^2 = 1$ to form a three term quadratic in $\cos\theta$
	$\rightarrow \cos\theta = 0.8$	A1	www
	$\rightarrow \theta = 36.9^{\circ} \text{ awrt}$	A1	www. Allow 0.644 ^c awrt. Ignore 323.1 ^o or 2.50 ^c . Note: correct answer without working scores 0/3.
		3	

October/November 2018

Question	Answer	Marks	Guidance
7	$\overrightarrow{PN} = 8\mathbf{i} - 8\mathbf{k}$	B1	
	$\overrightarrow{PM} = 4\mathbf{i} + 4\mathbf{j} - 6\mathbf{k}$	B2,1,0	Loses 1 mark for each component incorrect
			SC: $\overrightarrow{PN} = -8\mathbf{i} + 8\mathbf{k}$ and $\overrightarrow{PM} = -4\mathbf{i} - 4\mathbf{j} + 6\mathbf{k}$ scores 2/3.
	$\overrightarrow{PN}.\overrightarrow{PM} = 32 + 0 + 48 = 80$	M1	Evaluates $x_1x_2 + y_1y_2 + z_1z_2$ for correct vectors or one or both reversed.
	$ PN \times PM = \sqrt{128} \times \sqrt{68} \ (= 16\sqrt{34})$	M1	Product of their moduli – may be seen in cosine rule
	$\sqrt{128} \times \sqrt{68} \cos M\hat{P}N = 80$	M1	All linked correctly.
	Angle $M\hat{P}N = 31.0^{\circ}$ awrt	A1	Answer must come directly from +ve cosine ratio. Cosine rule not accepted as a complete method. Allow 0.540 ^c awrt. Note: Correct answer from incorrect vectors scores A0 (XP)
		7	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	A \hat{B} C using cosine rule giving $\cos^{-1}(\frac{-1}{8})$ or $2\sin^{-1}(\sqrt[3]{4})$ or $2\cos^{-1}\left(\frac{\sqrt{7}}{2}\right)$	M1	Correct method for $A \hat{B} C$, expect 1.696° awrt
	or $B\hat{A}C = \cos^{-1}(\sqrt[3]{4})$ or $B\hat{A}C = \sin^{-1}\frac{\sqrt{7}}{4}$ or $B\hat{A}C = \tan^{-1}\frac{\sqrt{7}}{3}$		Or for $B \hat{A} C$, expect 0.723 ^c awrt
	$C\hat{B}Y = \pi - A\hat{B}C \text{ or } 2 \times C\hat{A}B$	M1	For attempt at $C\hat{B} Y = \pi - A\hat{B}C$ or $C\hat{B} Y = 2 \times C\hat{A}B$
	OR		
	Find <i>CY</i> from \triangle <i>ACY</i> using Pythagoras or similar \triangle s	M1	Expect $4\sqrt{7}$
	$C\hat{B} Y = \cos^{-1}\left(\frac{8^2 + 8^2 - (their CY)^2}{2 \times 8 \times 8}\right)$	M1	Correct use of cosine rule
	$C \hat{B} Y = 1.445^{\circ} AG$	A1	Numerical values for angles in radians, if given, need to be correct to 3 decimal places. Method marks can be awarded for working in degrees. Need 82.8° awrt converted to radians for A1. Identification of angles must be consistent for A1.
		3	
8(ii)	Arc $CY = 8 \times 1.445$	B1	Use of $s=8\theta$ for arc <i>CY</i> , Expect 11.56
	$B\hat{A}C = \frac{1}{2}(\pi - A\hat{B}C) \text{ or } \cos^{-1}(\frac{3}{4})$	*M1	For a valid attempt at $B \hat{A} C$, may be from (i). Expect 0.7227 ^c
	Arc $XC = 12 \times (\text{their } B \hat{A} C)$	DM1	Expect 8.673
	Perimeter = 11.56 + 8.673 + 4 = 24.2 cm awrt www	A1	Omission of '+4' only penalised here.
		4	

Question	Answer	Marks	Guidance
9(i)	$2x^2 - 12x + 7 = 2(x - 3)^2 - 11$	B1 B1	Mark full expression if present: B1 for $2(x - 3)^2$ and B1 for -11 . If no clear expression award $a = -3$ and $b = -11$.
		2	
9(ii)	Range (of f or y) \geqslant 'their – 11'	B1FT	FT for their 'b' or start again. Condone >. Do NOT accept $x > \text{ or } \ge$
		1	
9(iii)	$(k =)$ –"their a" also allow x or $k \leq 3$	B1FT	FT for their "a" or start again using $\frac{dy}{dx} = 0$.
			Do NOT accept $x = 3$.
		1	
9(iv)	$y = 2(x-3)^2 - 11 \rightarrow y + 11 = 2(x-3)^2$	*M1	Isolating their $(x - 3)^2$, condone – 11.
	$\frac{y+11}{2} = (x-3)^2$		
	$x = 3 + \sqrt{\left(\frac{y+11}{2}\right)} \text{ or } 3 - \sqrt{\left(\frac{y+11}{2}\right)}$	DM1	Other operations in correct order, allow \pm at this stage. Condone – 3.
	$(g^{-1}(x) \text{ or } y) = 3 - \sqrt{\left(\frac{x+11}{2}\right)}$	A1	needs '-'. x and y could be interchanged at the start.
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2018

Question	Answer	Marks	Guidance
10(i)	$2x + \frac{12}{x} = k - x$ or $y = 2(k - y) + \frac{12}{k - y} \rightarrow 3$ term quadratic.	*M1	Attempt to eliminate y (or x) to form a 3 term quadratic. Expect $3x^2 - kx + 12$ or $3y^2 - 5ky + (2k^2 + 12)$ (= 0)
	Use of $b^2 - 4ac \rightarrow k^2 - 144 < 0$	DM1	Using the discriminant, allow \leq , = 0; expect 12 and -12
	-12 < k < 12	A1	Do NOT accept ≤ . Separate statements OK.
		3	
10(ii)	Using $k = 15$ in their 3 term quadratic	M1	From (i) or restart. Expect $3x^2 - 15x + 12$ or $3y^2 - 75y + 462$ (= 0)
	x = 1,4 or $y = 11, 14$	A1	Either pair of x or y values correct
	(1, 14) and (4, 11)	A1	Both pairs of coordinates
		3	
10(iii)	Gradient of $AB = -1 \rightarrow$ Perpendicular gradient = +1	B1FT	Use of $m_1m_2=-1$ to give +1 or ft from their <i>A</i> and <i>B</i> .
	Finding their midpoint using their (1, 14) and (4, 11)	M1	Expect (2 ¹ / ₂ , 12 ¹ / ₂)
	Equation: $y - 12\frac{1}{2} = (x - 2\frac{1}{2}) [y = x + 10]$	A1	Accept correct unsimplified and isw
		3	

October/November 2018

Question	Answer	Marks	Guidance
11(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \left[\frac{3}{2} \times \left(4x+1\right)^{-\frac{1}{2}}\right] \left[\times 4\right] \left[-2\right] \left(\frac{6}{\sqrt{4x+1}}-2\right)$	B2,1,0	Looking for 3 components
	$\int y dx = \left[3(4x+1)^{\frac{3}{2}} \div \frac{3}{2} \right] \left[\div 4 \right] \left[-\frac{2x^2}{2} \right] (+C)$ $\left(= \frac{(4x+1)^{\frac{3}{2}}}{2} - x^2 \right)$	B1 B1 B1	B1 for $3(4x+1)^{\frac{3}{2}} \div \frac{3}{2}$ B1 for ' \div 4'. B1 for ' $-\frac{2x^2}{2}$ '. Ignore omission of + C. If included isw any attempt at evaluating.
		5	
11(ii)	At M , $\frac{dy}{dx} = 0 \rightarrow \frac{6}{\sqrt{4x+1}} = 2$	M1	Sets their 2 term $\frac{dy}{dx}$ to 0 and attempts to solve (as far as $x = k$)
	x=2, y=5	A1 A1	
		3	

October/November 2018

Question	Answer	Marks	Guidance
11(iii)	Area under the curve = $\left[\frac{1}{2}(4x+1)^{\frac{3}{2}} - x^2\right]_0^2$	M1	Uses their integral and their '2' and 0 correctly
	(13.5 - 4) - 0.5 or $9.5 - 0.5 = 9$	A1	No working implies use of integration function on calculator M0A0.
	Area under the chord = trapezium = $\frac{1}{2} \times 2 \times (3+5) = 8$ Or $\left[\frac{x^2}{2} + 3x\right]_0^2 = 8$	M1	Either using the area of a trapezium with their 2, 3 and 5 or $\int (their x + 3) dx$ using their '2' and 0 correctly.
	(Shaded area = 9 - 8) = 1	A1	Dependent on both method marks,
	OR Area between the chord and the curve is:		
	$\int_{0}^{2} 3\sqrt{4x+1} - 2x - (x+3)dx$ = $\int_{0}^{2} 3\sqrt{4x+1} - 3x - 3dx$	M1	Subtracts their line from given curve and uses their '2' and 0 correctly.
	$= 3 \left[\frac{1}{6} (4x+1)^{\frac{3}{2}} - \frac{x^2}{2} - x \right]_0^2$	A1	All integration correct and limits 2 and 0.
	$=3\left\{\left(\frac{27}{6}-2-2\right)-\left(\frac{1}{6}\right)\right\}$	M1	Evidence of substituting their '2' and 0 into their integral.
	$= 3\left\{\frac{1}{2} - \frac{1}{6}\right\} = 3\left\{\frac{1}{3}\right\} = 1$	A1	No working implies use of a calculator M0A0.
		[4]	