Question	Answer	Marks	Guidance
1	40.5-31 $\sqrt{31}$	M1	standn correct but allow with no or incorrect cc
	$1-\phi(" 1.706$ ")	M1	indep correct area consistent with working
	$=0.0441(3$ sf) or 0.0440	A1	not 0.044
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2	Poisson	$\mathbf{B 1}$	seen or implied
	$\lambda=4.03$	$\mathbf{B 1}$	seen or implied
	$\mathrm{e}^{-4.03}\left(1+4.03+\frac{4.03^{2}}{2!}\right)$	$\mathbf{M 1}$	any λ; e.g. allow $\lambda=4$ no extra or missing terms
	$=0.234(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
3	$\begin{aligned} & \frac{153}{200}+z \times \sqrt{\frac{\frac{153}{200} \times \frac{200-153}{200}}{200}}=0.835 \\ & \left(\operatorname{Var}\left(P_{s}\right)=0.000898875\right) \\ & \text { (s.d. } 0.02998) \end{aligned}$	M1	
	$z=2.335$	A1	allow 2.33 or 2.34
	$2 \Phi(z)-1$	M1	or equivalent method indep
	$\alpha=98$	A1	allow 98.0 but not e.g. 98.04
		4	

Question	Answer	Marks	Guidance
4(i)	$300.1 \pm z \times \frac{0.9}{\sqrt{75}}$	M1	allow any value of z
	$z=2.576$	B1	allow 2.574 to 2.579
	299.83 to 300.37 (2 dps)	A1	answer must be seen to 2 dps need an interval
		3	
4(ii)	CI includes 300 so claim supported or justified or probably true	B1 FT	or equivalent FT from CI in (i)
		1	

Question	Answer	Marks	Guidance
5(i)	$\frac{1}{4} \int_{0}^{2}\left(x^{2}+x\right) \mathrm{d} x \quad\left(=\frac{1}{4}\left[\frac{x^{3}}{3}+\frac{x^{2}}{2}\right]_{0}^{2}\right)$	M1	Attempt integ $x \mathrm{f}(x)$, ignore limits
	$=\frac{1}{4}\left(\frac{8}{3}+2\right) \quad(-0)$	A1	Subst correct limits in correct integration
	$=\frac{7}{6} \mathrm{OE}$ or 1.17 (3 sf)	A1	
		3	
5(ii)	$\frac{1}{4} \int_{0}^{m}(x+1) \mathrm{d} x=0.5 \quad\left(=\frac{1}{4}\left[\frac{x^{2}}{2}+x\right]_{0}^{m}=0.5\right)$	M1	attempt integ $\mathrm{f}(x)$, limits 0 to unknown (or unknown to 2) and $=0.5$
	$\begin{aligned} & \frac{1}{4}\left(\frac{m^{2}}{2}+m\right)=0.5 \\ & m^{2}+2 m-4=0 \\ & m=\frac{-2 \pm \sqrt{4+16}}{2} \mathrm{OE} \end{aligned}$	A1	a correct equation in m (any form) or $\sqrt{5}-1$
	$m=1.24$	A1	must reject the negative value if there
		3	

Question	Answer	Marks	Guidance
6(i)	Mean $=3.2 \times 90=288$	B1	
	Variance $=0.4^{2} \times 90^{2}$	M1	
	$=1296$	A1	
		3	
6(ii)	Mean $={ }^{\prime} 288{ }^{\prime}+4.3 \times 95=696.5$	B1 FT	
	Variance $={ }^{\text {' } 1296{ }^{\prime}}+0.6^{2} \times 95^{2}=4545$	B1 FT	FT their (i)
	$\frac{670-696.5}{\sqrt{4545}} \quad(=-0.393)$	M1	FT Var provided both given Vars used standardising (ignore cc) no sd / Var mix
	$1-\phi\left({ }^{\prime}-0.393{ }^{\prime}\right)=\phi\left({ }^{\prime} 0.393\right)$	M1	correct area consistent with their working (i.e. their mean)
	$=0.653(3 \mathrm{sf})$	A1	
		5	

Question	Answer	Marks	Guidance
7(i)	H_{0} : mean no. sales $=3.5$	B1	or ".. = 0.7 (per day)"
	H_{1} : mean no. sales >3.5	M1	allow ' λ ' or ' μ ' but not just 'mean'
	$\begin{aligned} & \mathrm{P}(X \geqslant 5)=1-\mathrm{e}^{-3.5}(1+3.5+ \\ & \left.\frac{3.5^{2}}{2!}+\frac{3.55^{3}}{3!}+\frac{3.5^{4}}{4!}\right) \end{aligned}$	M1	
	$=0.275$	A1	allow 0.274
	Comp with 0.10	M1	valid comparison using Poisson
	No evidence (at 10%) to believe that sales per day have increased	A1 FT	correct conclusion FT no contradictions
		6	

Question	Answer	Marks	Guidance
7 7(ii)	$\lambda=3.9$	$\mathbf{B 1}$	
	$\mathrm{e}^{-3.9} \times \frac{3.9^{2}}{2!}$	$\mathbf{M 1}$	any $\lambda(\neq 0.7$ or 0.6$)$, single term
	$=0.154(3 \mathrm{sf})$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
8(i)	$\bar{x}=27 / 150(=0.18)$	B1	
	$\begin{aligned} & s=\sqrt{\frac{150}{149}} \times \sqrt{\frac{5.01}{150}-0.18^{2}} \text { or variance } \\ & (=0.031729) \\ & (\text { var }=3 / 2980=0.0010067) \end{aligned}$	M1	or var $=1 / 149\left(5.01-27.0^{2} / 150\right)$
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean }=0.185 \\ & \mathrm{H}_{1}: \text { Pop mean }<0.185 \end{aligned}$	B1	allow just ' μ '
	$\frac{0.18-0.185}{\frac{\left.'_{0} .031729\right)^{\prime}}{\sqrt{150}}}$	M1	standardising, need $\sqrt{150}$
	$=(-) 1.930(3 \mathrm{sfs})$ or 1.93	A1	
	Comp with $z=(-) 2.326$	M1	$\begin{array}{\|l} \text { consistent signs } \\ \text { or using probs } 0.0268>0.01 \text { or } 0.9732 \\ <0.99 \\ \text { or using } \mathrm{X}_{\text {crit }} 0.18>0.17897 \end{array}$
	There is no evidence (at 1% level) that concentration with drug is less than without drug	A1 FT	conclusion FT no contradictions
		7	

Question	Answer	Marks	Guidance
8(ii)	$\frac{c v-0.185}{\frac{0.031729^{\prime}}{\sqrt{150}}}(=-2.326)$	M1	must use 0.185 and $\sqrt{150}$
	$=0.17897$ or 0.179	A1	acceptance region (for H_{0}) is >0.179
	$\frac{" 0.17897 "-0.175}{\frac{\partial_{0} 0.031729}{\sqrt{150}}} \quad(=1.534)$	M1	must use 0.175 and $\sqrt{150}$
	1 - ϕ ("1.534")	M1	indep mark
	$=0.0625(3 \mathrm{sf})$	A1	Accept 0.0610 to 0.0628
		5	

