Question	Answer	Marks	Guidance
1(a)(i)	$\mathrm{Po}(2.54)$	M1	seen or implied $\operatorname{Po}(2540 \times 0.001)$
	$1-\mathrm{e}^{-2.54}(1+2.54)$	M1	any λ Allow 1 end error
	$=0.721(3 \mathrm{sf})$	A1	
		3	
1(a)(ii)	n large and p small (or $n p(=2.54)<5$)	B1	$n>50, p<0.1$
		1	
1(b)	$\mu=5.6$	B1	
	$\sigma=2.37(3 \mathrm{sf})$	B1	Accept $\sqrt{ } 5.6$
		2	

Question	Answer	Marks	Guidance
$2(\mathrm{i})$	$4820 \pm z \times \frac{1420}{\sqrt{125}}$	M1	Must be a z value
	$z=2.326$	B1	Accept $2.326-2.329$
	$4524 / 4525$ to $5115 / 5116$ or 4520 to $5120(3 \mathrm{sf})$	A1	Must be an interval
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
$2(\mathrm{ii})$	$\bar{x}=4840$	$\mathbf{B 1}$	or width $=280$ or half width $=140$
	$4840+1.96 \times \frac{1420}{\sqrt{n}}=4980$ OE	M1	or $140=1.96 \times \frac{1420}{\sqrt{n}} \quad$ OE
	$n=395$	$\mathbf{A 1}$	CAO must be an integer
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
3(i)	$\bar{m}=\frac{98.2}{100}=0.982$	B1	Accept either
	$\begin{aligned} & s=\sqrt{\frac{100}{99}} \times \sqrt{\frac{104.52}{100}-0.982^{2}} \quad(=0.28582) \\ & \text { or var }=0.08169 \end{aligned}$	M1	
	$\begin{aligned} & \mathrm{H}_{0}: \text { Pop mean mass }=1.01 \\ & \mathrm{H}_{1}: \text { Pop mean mass }<1.01 \end{aligned}$	B1	not just 'mean', but allow just ' μ '
	$\pm \frac{0.982-1.01}{\frac{0.28582}{\sqrt{100}}}$	M1	$\begin{equation*} \pm \frac{0.982-1.01}{\frac{0.28387}{\sqrt{100}}} \tag{M1} \end{equation*}$
	$=-0.980(3 \mathrm{sf})$ accept \pm	A1	$=-0.985(3 \mathrm{sfs})$ accept $\pm \quad$ A1
	Comp with $z=-1.645$ (or areas $0.1635>0.05$)	M1	Valid comparison of z 's or area's
	No evidence that (mean) mass is less than 1.01	A1 FT	Correct conclusion FT their z
		7	

Question	Answer	Marks	Guidance
$3(\mathrm{ii})$	Distr of X normal (so distr of \bar{X} normal) Must state or imply No	B1	X/parent population
		$\mathbf{1}$	

Question	Answer		Marks	Guidance
4(i)	$k \int_{0}^{a} \frac{1}{\sqrt{x}} \mathrm{~d} x=1$		M1	Attempt int $\mathrm{f}(x)$ and $=1$ ignore limits
	$\begin{array}{ll} \left(2 k\left[x^{0.5}\right]_{0}^{a}=1\right) & \\ 2 k a^{0.5}=1 & \text { or } a=\frac{1}{4 k^{2}} \end{array}$		A1	OE; a correct eqn in $k \& a$ after sub limits
	$k \int_{0}^{a} \frac{x}{\sqrt{x}} \mathrm{~d} x=3$		M1	Attempt int $x \mathrm{f}(x)$ and $=3$
	$\text { e.g. } \frac{2}{3} k a^{1.5}=3 \quad \text { or } a^{3}=\frac{81}{4 k^{2}}$		A1	OE; a correct eqn in k and a after sub limits
	e.g. $a^{2}=81 \quad$ or e.g. $k^{2}=\frac{81}{4 \times 9^{3}}$		M1	Attempt eliminate one letter
	$a=9$		A1	Convincingly obtained
	$\begin{aligned} & \text { e.g. } k=\frac{9}{54} \\ & k=\frac{1}{6} \end{aligned}$	AG	A1	
			7	

Question	Answer	Marks	Guidance
4(ii)	$\frac{1}{6} \int_{0}^{m} \frac{1}{\sqrt{x}} \mathrm{~d} x=0.5 \quad \text { OE }$	M1	Attempt int $\mathrm{f}(x)$, unknown limit and $=0.5$
	$\frac{1}{3} m^{0.5}=0.5$	A1	a correct equn in m after sub limits
	$m=2.25$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	$\mathrm{E}(X-Y)=56-43 \quad(=13)$	B1	
	$\operatorname{Var}(X-Y)=6^{2}+5^{2} \quad(=61)$	M1	
	$\frac{0-13}{\sqrt{61}} \quad(=-1.664)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1-\phi\left({ }^{\prime}-1.664{ }^{\prime}\right)=\phi\left({ }^{\prime} 1.664^{\prime}\right)$	M1	For area consistent with their working
	$=0.952(3 \mathrm{sf})$	A1	Similar scheme for use of $Y-X$
		5	

Question	Answer	Marks	Guidance
5(ii)	$\mathrm{E}(M)=56+1.5(43) \quad(=120.5)$	B1	
	$\operatorname{Var}(M)=6^{2}+1.5^{2} \times 5^{2} \quad(=92.25)$	M1	
	$\frac{135-120.5}{\sqrt{92.25}}$ $(=1.510)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1-\phi(' 1.510 ')$	M1	For area consistent with their working
	$=0.0655 \text { or } 0.0656 \text { or } 6.55 \% \text { or } 6.56 \%(3 \mathrm{sf})$ As final answer	A1	Allow 6.6% or 6.5% or 7\% if correct working seen
		5	

Question	Answer	Marks	Guidance
6(i)	H_{0} : Pop mean no. defectives $=5.15$ H_{1} : Pop mean no. defectives <5.15	B1	$\begin{aligned} & \text { or ' }=1.03 \text { (per day)' } \\ & \text { not just 'mean', but allow just ' } \lambda \text { ' or ' } \mu \text { ' } \end{aligned}$
	$\mathrm{P}(X \leqslant 2)$	M1	Attempted. Any one term error/end error/incorrect λ /expression 1-...
	$=\mathrm{e}^{-5.15}\left(1+5.15+\frac{5.15^{2}}{2}\right)$	M1	Correct expression attempted
	$=0.113$	A1	
	Comp with 0.1	M1	Valid comparison
	No evidence to believe mean no. of defectives has decreased	A1 FT	Correct conclusion (FT their value) No contradictions
		6	

Question	Answer	Marks	Guidance
6(ii)	$\begin{aligned} & \text { BOTH } \mathrm{P}(X \leqslant 1)=\mathrm{e}^{-5.15}(1+5.15)(=0.0357) \text { AND } \mathrm{P}(X \leqslant 2)== \\ & \mathrm{e}^{-5.15}\left(1+5.15+\frac{5.15^{2}}{2}\right)=(0.113) \end{aligned}$	B1*	(Could be seen in (i))
	Comp either with 0.1	DB1	One comparison with 0.01 (could be seen in (i))
	$\mathrm{P}($ Type I error $)=0.0357(3 \mathrm{sf})$	B1	
		3	
6(iii)	Actually mean $=1.03$ but conclude that mean <1.03	B1	Mean no. of defectives not reduced, but conclude that it is reduced.
		1	

