Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November
2017

Question	Answer	Marks	Guidance
1(a)(i)	Po(2.54)	M1	seen or implied $Po(2540 \times 0.001)$
	$1 - e^{-2.54}(1 + 2.54)$	M1	any λ Allow 1 end error
	= 0.721 (3 sf)	A1	
		3	
1(a)(ii)	<i>n</i> large and <i>p</i> small (or $np (= 2.54) < 5$)	B1	n > 50, p < 0.1
		1	
1(b)	$\mu = 5.6$	B1	
	$\sigma = 2.37 (3 \text{ sf})$	B1	Accept √5.6
		2	

Question	Answer	Marks	Guidance
2(i)	$4820 \pm z \times \frac{1420}{\sqrt{125}}$	M1	Must be a <i>z</i> value
	z = 2.326	B1	Accept 2.326 - 2.329
	4524/4525 to 5115/5116 or 4520 to 5120 (3 sf)	A1	Must be an interval
		3	

9709/72

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2017

Question	Answer	Marks	Guidance
2(ii)	$\overline{x} = 4840$	B1	or width = 280 or half width = 140
	$4840 + 1.96 \times \frac{1420}{\sqrt{n}} = 4980$ OE	M1	or $140 = 1.96 \times \frac{1420}{\sqrt{n}}$ OE
	n = 395	A1	CAO must be an integer
		3	

Question	Answer	Marks	Guidance
3(i)	$\overline{m} = \frac{98.2}{100} = 0.982$	B1	Accept either
	$s = \sqrt{\frac{100}{99}} \times \sqrt{\frac{104.52}{100} - 0.982^2} (= 0.28582)$ or var = 0.08169	M1	
	H_0 : Pop mean mass = 1.01 H_1 : Pop mean mass < 1.01	B1	not just 'mean', but allow just ' μ '
	$\pm \frac{0.982 - 1.01}{\frac{0.28582}{\sqrt{100}}}$	M1	$\pm \frac{0.982 - 1.01}{\frac{0.284387}{\sqrt{100}}} $ M1
	$= -0.980 (3 \text{ sf}) \text{ accept } \pm$	A1	$= -0.985 (3 \text{ sfs}) \text{ accept } \pm \text{A1}$
	Comp with $z = -1.645$ (or areas $0.1635 > 0.05$)	M1	Valid comparison of z's or area's
	No evidence that (mean) mass is less than 1.01	A1 FT	Correct conclusion FT their z
		7	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(ii)	Distr of X normal (so distr of \overline{X} normal) Must state or imply No	B1	X/parent population
		1	

Question	Answer	Marks	Guidance
4(i)	$k \int_{0}^{a} \frac{1}{\sqrt{x}} dx = 1$	M1	Attempt int $f(x)$ and = 1 ignore limits
	$(2k[x^{0.5}]_0^a = 1)$	A1	OE; a correct eqn in k & a after sub limits
	$2ka^{0.5} = 1$ or $a = \frac{1}{4k^2}$		
	$k \int_{0}^{a} \frac{x}{\sqrt{x}} dx = 3$	M1	Attempt int $xf(x)$ and = 3
	e.g. $\frac{2}{3}ka^{1.5} = 3$ or $a^3 = \frac{81}{4k^2}$	A1	OE; a correct eqn in k and a after sub limits
	e.g. $a^2 = 81$ or e.g. $k^2 = \frac{81}{4 \times 9^3}$	M1	Attempt eliminate one letter
	<i>a</i> = 9	A1	Convincingly obtained
	e.g. $k = \frac{9}{54}$	A1	
	$k = \frac{1}{6} $ AG		
		7	

9709/72

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2017

Question	Answer	Marks	Guidance
4(ii)	$\frac{1}{6} \int_{0}^{m} \frac{1}{\sqrt{x}} dx = 0.5$ OE	M1	Attempt int $f(x)$, unknown limit and $= 0.5$
	$\frac{1}{3}m^{0.5} = 0.5$	A1	a correct equn in <i>m</i> after sub limits
	m = 2.25	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	E(X - Y) = 56-43 (= 13)	B1	
	$Var(X-Y) = 6^2 + 5^2 \qquad (= 61)$	M1	
	$\frac{0-13}{\sqrt{61'}} \qquad (=-1.664)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	$1 - \phi('-1.664') = \phi('1.664')$	M1	For area consistent with their working
	= 0.952 (3 sf)	A1	Similar scheme for use of $Y - X$
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	E(M) = 56 + 1.5(43) (= 120.5)	B1	
	$Var(M) = 6^2 + 1.5^2 \times 5^2$ (= 92.25)	M1	
	$\frac{135-120.5}{\sqrt{92.25}} \qquad (=1.510)$	M1	Ignore any attempted cc/no SD/var mixes. var must be attempt at a combination
	1 - φ('1.510')	M1	For area consistent with their working
	= 0.0655 or 0.0656 or 6.55% or 6.56% (3 sf) As final answer	A1	Allow 6.6% or 6.5% or 7% if correct working seen
		5	

Question	Answer	Marks	Guidance
6(i)	H ₀ : Pop mean no. defectives = 5.15 H ₁ : Pop mean no. defectives < 5.15	B1	or '= 1.03 (per day)' not just 'mean', but allow just ' λ ' or ' μ '
	$P(X \leq 2)$	M1	Attempted. Any one term error/end error/incorrect λ /expression 1
	$= e^{-5.15} \left(1 + 5.15 + \frac{5.15^2}{2} \right)$	M1	Correct expression attempted
	= 0.113	A1	
	Comp with 0.1	M1	Valid comparison
	No evidence to believe mean no. of defectives has decreased	A1 FT	Correct conclusion (FT their value) No contradictions
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November 2017

Question	Answer	Marks	Guidance
6(ii)	BOTH P(X ≤ 1) = e ^{-5.15} (1 + 5.15) (= 0.0357) AND P(X ≤ 2) = = e ^{-5.15} (1 + 5.15 + $\frac{5.15^2}{2}$)= (0.113)	B1*	(Could be seen in (i))
	Comp either with 0.1	DB1	One comparison with 0.01 (could be seen in (i))
	$P(Type \ I \ error) = 0.0357 \ (3 \ sf)$	B1	
		3	
6(iii)	Actually mean = 1.03 but conclude that mean < 1.03	B1	Mean no. of defectives not reduced, but conclude that it is reduced.
		1	