Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
1	<i>EITHER:</i> $(\Sigma x =) 11.5n = 27 + 10n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n , without x
		M1	10 <i>n</i> or 11.5 <i>n</i> seen in expression without x (1.5 <i>n</i> = 27 implies M2)
	<i>n</i> = 18	A1)	
	<i>OR</i> : $11.5 = \frac{27}{2} + 10$	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n , without x
	n	M1	27/ <i>n</i> seen in expression without <i>x</i> (1.5 = $\frac{27}{n}$ implies M2)
	<i>n</i> = 18	A1)	
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
2(i)	points (50, 14), (80, 62), (100, 132), (120, 140)	B1	Correct cfs values seen listed, in or by table or on graph, 0 not required
	cf 200	B1	Axes labelled 'cumulative frequency' (or cf) and 'circumference [or cir or c etc.] (in) cm'. Linear scales – c.f. 0–140 circumference 40–120 (ignore <40 on circ.) At least 3 values stated on each axis, but (0,0) can be implied without stating.
	0 20 40 60 80 100 120 Circumference cm	B1	All points plotted accurately
		3	
2(ii)	140 - 54 = 86	M1	Finding correct value from graph (checked ± 1 mm) or linear interpolation. Subtraction from 140 can be implied
	Percentage = 61.4%	A1	$60.5\% \leqslant \text{Ans} \leqslant 64.5\%$
		2	

October/November 2017

Question	Answer	Marks	Guidance
3(i)	<i>EITHER:</i> P(X=3) = P(RRB) = $\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}$, $p, q, r \le 6$ and $p \ge q \ge r, r \ge 4$, accept $\times 1$ as $\frac{4}{r}$.
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	OR1: P(X=3) = P(RRB) = $\frac{{}^{2}C_{2}}{{}^{6}C_{2}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities stated clearly, $\times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$ or $\times 1$ or $\times \frac{4}{4}$ included
	$=\frac{1}{15}$ AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
	<i>OR2:</i> P(X=3) = P(RRB) = $\frac{{}^{2}C_{1}}{{}^{6}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{5}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{4}C_{1}}$	(M1	probabilities in order $\frac{{}^{2}C_{1}}{{}^{p}C_{1}} \times \frac{{}^{1}C_{1}}{{}^{q}C_{1}} \times \frac{{}^{4}C_{1}}{{}^{r}C_{1}} p, q, r \leq 6$ and $p \geq q \geq r, r \geq 4$ $(\times \frac{{}^{4}C_{1}}{{}^{4}C_{1}} \text{ or } \times 1 \text{ or } \times \frac{4}{4} \text{ acceptable})$
	= 1/15 AG	A1)	Needs either P(RRB) OE stated or identified on tree diagram.
		2	

9709/62

Question				Answe	r	Marks	Guidance
3(ii)	P(1) = P	$P(B) = \frac{4}{6}$	$(\frac{2}{3}=0$.667)		B1	Probability distribution table drawn with at least 2 correct <i>x</i> values and at least 1 probability. All probabilities $0 \le p \le 1$.
	P(2) = P(RB) = $\frac{2}{6} \times \frac{4}{5} = \frac{4}{15}$ (= 0.267) P(3) = P(RRB) = $\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4} = \frac{1}{15}$ (= 0.0667)			0.267)	B 1	P(1) or P(2) correct unsimplified, or better, and identified.	
				$\frac{1}{15}$ (= 0.0667)	B1	All probabilities in table, evaluated correctly OE. Additional x values must have a stated probability of 0	
	x	1	2	3]		
	Р	$\frac{10}{15}$	$\frac{4}{15}$	$\frac{1}{15}$			
						3	

9709/62

Question	Answer	Marks	Guidance
4(i)	$P(4, 2H) = \frac{1}{2} \times {}^{4}C_{2} \times (\frac{1}{2})^{2} (\frac{2}{2})^{2}$	M1	Multiplying their 2H expression by ¹ / ₄ [P(4)]
	4 2 3 3	M1	Remaining factor is $(\frac{1}{2})^2(\frac{2}{2})^2$ [or $\frac{4}{2}$] multiplied by integer value
			$k \ge 1 \text{ OE}$
	$=\frac{2}{27}(0.0741)$	A1	
		3	
4(ii)	P(3, 3H) = $\frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108}$ (0.00926)	B1	
		1	
4(iii)	P(1, 1H) = $\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$ (0.08333)	M1	Correct expression for 1 of P(1, 1H), P(2, 2H), P(4, 4H) Unsimplified (or better)
	P(2, 2H) = $\frac{1}{4} \times (\frac{1}{3})^2 = \frac{1}{36} (0.02778)$	M1	Summing their values for 3 or 4 appropriate outcomes for the 'game' with no additional outcomes
	$P(3, 3H) = \frac{1}{4} \times (\frac{1}{3})^3 = \frac{1}{108} (0.009259)$		with no additional outcomes.
	P(4, 4H) = $\frac{1}{4} \times (\frac{1}{3})^4 = \frac{1}{324}$ (0.003086)		
	$Prob = \frac{10}{81} \ (0.123)$	A1	
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	<i>EITHER:</i> P(>2) = 1 - P(0, 1, 2)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$
	$= 1 - (0.96)^{30} - {}^{30}C_1(0.04)(0.96)^{29} - {}^{30}C_2(0.04)^2(0.96)^{28}$ (= 1 - 0.2938 0.3673 0.2219)	A1	Correct unsimplified answer
	= 1-0.883103 = 0.117 (0.116896)	A1)	
	OR: P(>2) = P(3,4,5,6,30)	(M1	Binomial term of form ${}^{30}C_x p^x (1-p)^{30-x}$, $0 any p$
	$= {}^{30}C_3(0.04)^3(0.96)^{27} + {}^{30}C_4(0.04)^4(0.96)^{26} + \dots + (0.04)^{30}$	A1	Correct unsimplified answer
	= 0.117	A1)	
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(ii)	$np = 280 \times 0.1169 = 32.73, npq = 280 \times 0.1169 \times 0.8831 = 28.9$	M1 FT	Correct unsimplified <i>np</i> and <i>npq</i> , FT their <i>p</i> from (i),
	$P(\ge 30) = P\left(z > \frac{29.5 - 32.73}{\sqrt{28.9}}\right) = P(z > -0.6008)$	M1	Substituting <i>their</i> μ and σ (\sqrt{npq} only) into the Standardisation Formula
		M1	Using continuity correction of 29.5 or 30.5
		M1	Appropriate area Φ from standardisation formula P(z >) in final solution
	= 0.726	A1	
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(i)	<i>EITHER:</i> 3**, 4**, 6**, 8**	(M1	${}^{5}P_{2} \text{ or } {}^{5}C_{2} \times 2! \text{ or } 5 \times 4 \text{ OE} \text{ (considering final 2 digits)}$
	options $4 \times 5 \times 4 = 80$	M1	Mult by 4 or summing 4 options (considering first digit)
		A1)	Correct final answer
	<i>OR:</i> Total number of values: $6 \times 5 \times 4 = 120$	(M1	Calculating total number of values (with subtraction seen)
	Number of values less than 300: $2 \times 5 \times 4 = 40$	M1	Calculating number of unwanted values
	Number of evens = $120 - 40 = 80$	A1)	Correct final answer
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(ii)	3**, 4**, 6**, 8** <i>EITHER:</i> options 4 × 6 × 4 (last)	(M1	6 linked to considering middle digit e.g. multiplied or in list
		M1	Multiply an integer by 4×4 (condone $\times 16$) (No additional figures present for both M's to be awarded)
	= 96	A1)	
	<i>OR:</i> Total number of values $4 \times 6 \times 6 = 144$	(M1	Calculating total number of values (with subtraction seen)
	Number of odd values $4 \times 6 \times 2 = 48$	M1	Calculating number of unwanted values
	Number of evens = $144 - 48 = 96$	A1)	
		3	
6(b)(i)	252	B1	
		1	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(b)(ii)	B (6)G(4)		
	5 0 in ${}^{6}C_{5}(\times {}^{4}C_{0}) = 6 \times 1 = 6$ 4 1 in ${}^{6}C_{4} \times {}^{4}C_{1} = 15 \times 4 = 60$ 3 2 in ${}^{6}C_{3} \times {}^{4}C_{2} = 20 \times 6 = 120$	M1	Multiplying 2 combinations ${}^{6}C_{q} \times {}^{4}C_{r}$, $q + r = 5$, or ${}^{6}C_{5}$ seen alone
		M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.
	Total = 186 ways	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$P(>65) = P\left(z > \frac{65 - 61.4}{12.3}\right) = P(z > 0.2927)$	M1	Standardising no continuity correction, no square or square root, condone \pm standardisation formula
		M1	Correct area (< 0.5)
	= 1 - 0.6153 = 0.385	A1	
		3	

October/November 2017

Question	Answer	Marks	Guidance
7(ii)	P (< 65) = 0.6153 so P(< k) = 0.25 + 0.6153 = 0.8653	B1	
	<i>z</i> = 1.105	B1	$z = \pm 1.105$ seen or rounding to 1.1
	$1.105 = \frac{k - 61.4}{12.3}$	M1	standardising allow \pm , cc, sq rt, sq. Need to see use of tables backwards so must be a <i>z</i> -value, not $1 - z$ value.
	<i>k</i> = 75.0	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
7(iii)	$2.326 = \frac{97.2 - \mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44 = \frac{55.2 - \mu}{\sigma}$	B1	± 0.44 seen
		M1	An equation with a <i>z</i> -value, μ , σ and 97.2 or 55.2, allow $\sqrt{\sigma}$ or σ^2
		M1	Algebraic elimination μ or σ from <i>their</i> two simultaneous equations
	$\mu = 61.9$ $\sigma = 15.2$	A1	both correct answers
		5	