Question	Answer	Marks	Guidance
1	EITHER:$(\Sigma x=) 11.5 n=27+10 n$	(M1	Expanding brackets and forming a three term equation involving 27 and at least one term in n, without x
		M1	$10 n$ or $11.5 n$ seen in expression without x ($1.5 n=27$ implies M2)
	$n=18$	A1)	
	OR: 27	(M1	Dividing coded sum by n and forming a three term equation involving 11.5 and at least one term in n, without x
	n	M1	27/n seen in expression without x $\left(1.5=\frac{27}{n}\right. \text { implies M2) }$
	$n=18$	A1)	
		3	

Question	Answer	Marks	Guidance
3(i)	EITHER: $\mathrm{P}(X=3)=\mathrm{P}(\mathrm{RRB})=\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}$	(M1	probabilities in order $\frac{2}{p} \times \frac{1}{q} \times \frac{4}{r}, p, q, r \leqslant 6$ and $p \geqslant q \geqslant r, r \geqslant 4$, accept $\times 1$ as $\frac{4}{r}$.
	$=\frac{1}{15} \quad \mathrm{AG}$	A1)	Needs either $\mathrm{P}(\mathrm{RRB})$ OE stated or identified on tree diagram.
	OR1: $\mathrm{P}(X=3)=\mathrm{P}(\mathrm{RRB})=\frac{{ }^{2} \mathrm{C}_{2}}{{ }^{6} \mathrm{C}_{2}} \times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{4} \mathrm{C}_{1}}$	(M1	probabilities stated clearly, $\times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{4} \mathrm{C}_{1}}$ or $\times 1$ or $\times \frac{4}{4}$ included
	$=\frac{1}{15} \mathrm{AG}$	A1)	Needs either $\mathrm{P}(\mathrm{RRB})$ OE stated or identified on tree diagram.
	OR2: $\mathrm{P}(X=3)=\mathrm{P}(\mathrm{RRB})=\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{6} \mathrm{C}_{1}} \times \frac{{ }^{1} \mathrm{C}_{1}}{{ }^{5} \mathrm{C}_{1}} \times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{4} \mathrm{C}_{1}}$	(M1	probabilities in order $\frac{{ }^{2} \mathrm{C}_{1}}{{ }^{\mathrm{p}} \mathrm{C}_{1}} \times \frac{{ }^{1} \mathrm{C}_{1}}{{ }^{\mathrm{q}} \mathrm{C}_{1}} \times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{\mathrm{r}} \mathrm{C}_{1}} p, q, r \leqslant 6$ and $p \geqslant q \geqslant r, r \geqslant 4$ $\left(\times \frac{{ }^{4} \mathrm{C}_{1}}{{ }^{4} \mathrm{C}_{1}}\right.$ or $\times 1$ or $\times \frac{4}{4}$ acceptable $)$
	$=1 / 15 \mathrm{AG}$	A1)	Needs either $\mathrm{P}(\mathrm{RRB})$ OE stated or identified on tree diagram.
		2	

Question				Ans	Marks	Guidance
3(ii)	$\begin{aligned} & \mathrm{P}(1)=\mathrm{P}(\mathrm{~B})=\frac{4}{6}\left(\frac{2}{3}=0.667\right) \\ & \mathrm{P}(2)=\mathrm{P}(\mathrm{RB})=\frac{2}{6} \times \frac{4}{5}=\frac{4}{15}(=0.267) \\ & \mathrm{P}(3)=\mathrm{P}(\mathrm{RRB})=\frac{2}{6} \times \frac{1}{5} \times \frac{4}{4}=\frac{1}{15}(=0.0667) \end{aligned}$				B1	Probability distribution table drawn with at least 2 correct x values and at least 1 probability. All probabilities $0 \leqslant p<1$.
					B1	$\mathrm{P}(1)$ or $\mathrm{P}(2)$ correct unsimplified, or better, and identified.
					B1	All probabilities in table, evaluated correctly OE. Additional x values must have a stated probability of 0
	x	1	2	3		
	P	$\frac{10}{15}$	$\frac{4}{15}$	$\frac{1}{15}$		
					3	

Question	Answer	Marks	Guidance
4(i)	$\mathrm{P}(4,2 \mathrm{H})=\frac{1}{4} \times{ }^{4} \mathrm{C}_{2} \times\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}$	M1	Multiplying their 2 H expression by $1 / 4[\mathrm{P}(4)]$
		M1	Remaining factor is $\left(\frac{1}{3}\right)^{2}\left(\frac{2}{3}\right)^{2}$ [or $\left.\frac{4}{81}\right]$ multiplied by integer value $k \geqslant 1 \mathrm{OE}$
	$=\frac{2}{27}(0.0741)$	A1	
		3	
4(ii)	$\mathrm{P}(3,3 \mathrm{H})=\frac{1}{4} \times\left(\frac{1}{3}\right)^{3}=\frac{1}{108}(0.00926)$	B1	
		1	
4(iii)	$\begin{aligned} & \mathrm{P}(1,1 \mathrm{H})=\frac{1}{4} \times \frac{1}{3}=\frac{1}{12}(0.08333) \\ & \mathrm{P}(2,2 \mathrm{H})=\frac{1}{4} \times\left(\frac{1}{3}\right)^{2}=\frac{1}{36}(0.02778) \\ & \mathrm{P}(3,3 \mathrm{H})=\frac{1}{4} \times\left(\frac{1}{3}\right)^{3}=\frac{1}{108}(0.009259) \\ & \mathrm{P}(4,4 \mathrm{H})=\frac{1}{4} \times\left(\frac{1}{3}\right)^{4}=\frac{1}{324}(0.003086) \end{aligned}$	M1	Correct expression for 1 of $\mathrm{P}(1,1 \mathrm{H}), \mathrm{P}(2,2 \mathrm{H}), \mathrm{P}(4,4 \mathrm{H})$ Unsimplified (or better)
		M1	Summing their values for 3 or 4 appropriate outcomes for the 'game' with no additional outcomes.
	$\text { Prob }=\frac{10}{81}(0.123)$	A1	
		3	

Question	Answer	Marks	Guidance
5(i)	EITHER: $\mathrm{P}(>2)=1-\mathrm{P}(0,1,2)$	(M1	Binomial term of form ${ }^{30} \mathrm{C}_{x} p^{x}(1-p)^{30-x}, 0<p<1$ any p
	$\begin{aligned} & =1-(0.96)^{30}-{ }^{30} \mathrm{C}_{1}(0.04)(0.96)^{29}-{ }^{30} \mathrm{C}_{2}(0.04)^{2}(0.96)^{28} \\ & (=1-0.2938 \ldots-0.3673 \ldots-0.2219 \ldots) \end{aligned}$	A1	Correct unsimplified answer
	$=1-0.883103=0.117(0.116896)$	A1)	
	OR: $P(>2)=P(3,4,5,6, \ldots .30)$	(M1	Binomial term of form ${ }^{30} \mathrm{C}_{x} p^{x}(1-p)^{30-x}, 0<p<1$ any p
	$={ }^{30} \mathrm{C}_{3}(0.04)^{3}(0.96){ }^{27}+{ }^{30} \mathrm{C}_{4}(0.04)^{4}(0.96)^{26}+\ldots+(0.04)^{30}$	A1	Correct unsimplified answer
	$=0.117$	A1)	
		3	

Question	Answer	Marks	Guidance
5(ii)	$\begin{aligned} & n p=280 \times 0.1169=32.73, n p q=280 \times 0.1169 \times 0.8831= \\ & 28.9 \end{aligned}$	M1 FT	Correct unsimplified $n p$ and $n p q$, FT their p from (i),
	$\mathrm{P}(\geqslant 30)=\mathrm{P}\left(z>\frac{29.5-32.73}{\sqrt{28.9}}\right)=\mathrm{P}(z>-0.6008)$	M1	Substituting their μ and $\sigma(\sqrt{ } n p q$ only $)$ into the Standardisation Formula
		M1	Using continuity correction of 29.5 or 30.5
		M1	Appropriate area Φ from standardisation formula $\mathrm{P}(\mathrm{z}>\ldots$.$) in final$ solution
	$=0.726$	A1	
		5	

Question	Answer	Marks	Guidance
6(a)(i)	EITHER: $3^{* *}, 4^{* *}, 6^{* *}, 8^{* *}$	(M1	${ }^{5} \mathrm{P}_{2}$ or ${ }^{5} \mathrm{C}_{2} \times 2$! or $5 \times 4 \mathrm{OE}$ (considering final 2 digits)
	options $4 \times 5 \times 4=80$	M1	Mult by 4 or summing 4 options (considering first digit)
		A1)	Correct final answer
	OR: Total number of values: $6 \times 5 \times 4=120$	(M1	Calculating total number of values (with subtraction seen)
	Number of values less than $300: 2 \times 5 \times 4=40$	M1	Calculating number of unwanted values
	Number of evens $=120-40=80$	A1)	Correct final answer
		3	

Question	Answer	Marks	Guidance
6(a)(ii)	$3^{* *}, 4^{* *}, 6^{* *}, 8^{* *}$ EITHER: options $4 \times 6 \times 4$ (last)	(M1	6 linked to considering middle digit e.g. multiplied or in list
		M1	Multiply an integer by 4×4 (condone $\times 16$) (No additional figures present for both M's to be awarded)
	$=96$	A1)	
	OR: Total number of values $4 \times 6 \times 6=144$	(M1	Calculating total number of values (with subtraction seen)
	Number of odd values $4 \times 6 \times 2=48$	M1	Calculating number of unwanted values
	Number of evens $=144-48=96$	A1)	
		3	
6(b)(i)	252	B1	
		1	

Question	Answer	Marks	Guidance
6(b)(ii)	B (6)G(4)		
	$\begin{array}{ll} 5 & 0 \text { in }{ }^{6} \mathrm{C}_{5}\left(\times{ }^{4} \mathrm{C}_{0}\right)=6 \times 1=6 \\ 4 & 1 \text { in }{ }^{6} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{1}=15 \times 4=60 \end{array}$	M1	Multiplying 2 combinations ${ }^{6} \mathrm{C}_{q} \times{ }^{4} \mathrm{C}_{r}, q+r=5$, or ${ }^{6} \mathrm{C}_{5}$ seen alone
	32 in ${ }^{6} \mathrm{C}_{3} \times{ }^{4} \mathrm{C}_{2}=20 \times 6=120$	M1	Summing 2 or 3 appropriate outcomes, involving perm/comb, no extra outcomes.
	Total $=186$ ways	A1	
		3	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$	$\mathrm{P}(>65)=\mathrm{P}\left(z>\frac{65-61.4}{12.3}\right)=\mathrm{P}(z>0.2927)$	$\mathbf{M 1}$	Standardising no continuity correction, no square or square root, condone \pm standardisation formula
		$\mathbf{M 1}$	Correct area (<0.5)
	$=1-0.6153=0.385$	$\mathbf{A 1}$	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(ii)	$\mathrm{P}(<65)=0.6153$ so $\mathrm{P}(<k)=0.25+0.6153=0.8653$	B1	
	$z=1.105$	B1	$z= \pm 1.105$ seen or rounding to 1.1
	$1.105=\frac{k-61.4}{12.3}$	M1	standardising allow \pm, cc, sq rt, sq. Need to see use of tables backwards so must be a z-value, not $1-z$ value.
	$k=75.0$	A1	Answers which round to 75.0. Condone 75 if supported.
		4	
7(iii)	$2.326=\frac{97.2-\mu}{\sigma}$	B1	± 2.326 seen (Use of critical value)
	$-0.44=\frac{55.2-\mu}{\sigma}$	B1	± 0.44 seen
		M1	An equation with a z-value, μ, σ and 97.2 or 55.2 , allow $\sqrt{ } \sigma$ or σ^{2}
		M1	Algebraic elimination μ or σ from their two simultaneous equations
	$\begin{aligned} \mu & =61.9 \\ \sigma & =15.2 \end{aligned}$	A1	both correct answers
		5	

