Question	Answer	Marks	
1	$p+q=0.45$	$\mathbf{M 1}$	Equation involving $\Sigma \mathrm{P}(x)=1$
	$0.15+2 p+1.2+6 q=3.05$	$\mathbf{M 1}$	Equation using E $(X)=3.05$
	$q=0.2$	$\mathbf{M 1}$	Solving simultaneous equations to one variable
	$p=0.25$	$\mathbf{A 1}$	Both answers correct
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2 (ii)	$48-35=13$ $t=6.5 \mathrm{sec}$	$\mathbf{M 1}$	Subt 35 (checked $\pm 1 \mathrm{~mm}$ on graph) from 48 or 50,
		A1	$6 \leqslant$ Ans $\leqslant 7$
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(i)	$p=0.207$	B1	
		1	
3(ii)	Var $=30 \times 0.207 \times 0.793=4.92$	B1	
		1	
3(iii)	$\mathrm{P}(\geqslant 2)=1-\mathrm{P}(0,1)$	M1	
	$=1-(0.793) 15-\binom{15}{1}(0.207)(0.793) 14$	M1	$1-\mathrm{P}(0,1)$ seen $n=15 p=$ any prob
	$=0.848$	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	$\frac{(48.7 \times 12+38.1 \times 7)}{19}$	M1	Accept unsimplified (may be separate calculations)
	$=44.8$	A1	
		2	
4(ii)	$7.65^{2}=\frac{\Sigma x^{2}}{12}-48.7^{2} \quad \Sigma x^{2}=29162.55$	M1	Substitution in one correct variance formula
	$4.2^{2}=\frac{\Sigma y^{2}}{7}-38.1^{2} \quad \Sigma y^{2}=10284.75$	A1	One Σx^{2} or Σy^{2} correct (can be rounded to 4sf))
	$\text { Combined var }=\frac{(29162.55+10284 . .75)}{19}-44.79^{2}$ $=\frac{39447.3}{19}-44.79^{2}$	M1	Using their Σx^{2} and Σy^{2} and their $4(\mathbf{i})$ in the variance formula
	Combined $\sigma=8.37$ or 8.36	A1	
		4	

Question	Answer	Marks	Guidance
6(a)(i)	${ }^{40} \mathrm{P}_{5}$	M1	${ }^{40} \mathrm{P}_{x}$ or ${ }^{y} \mathrm{P}_{5}$ oe seen, can be mult by $k \geqslant 1$
	$=78960960$	A1	
		2	
6(a)(ii)	not front row e.g. WEJ** in $3 \times 3!=18$ ways	B1	3 ! seen mult by $k \geqslant 1$
	7 rows in $7 \times 18=126$ ways	B1	mult by 7
	front row: e.g. ${ }^{*} \mathrm{MA}^{* *}$ in $4 \times 2=8$ ways	M1	attempt at front row arrangements and multiplying by the 7 other rows arrangements, need not be correct
	Total $126 \times 8=1008$	A1	
		4	
6(b)	EITHER: e.g. ${ }^{*} \mathrm{R} * *$ in ${ }^{8} \mathrm{C}_{3}$ ways $=56$ ways *L** in ${ }^{8} \mathrm{C}_{3}=56$ ways	(M1	Considering either R or L only in team
	**** in ${ }^{8} \mathrm{C}_{4}=70$ ways	M1*	Considering neither in team
		DM1	summing 3 scenarios
	Total 182 ways	A1)	
	OR1: No restrictions ${ }^{10} \mathrm{C}_{4}=210$ ways	(M1	${ }^{10} \mathrm{C}_{4}-$, Considering no restrictions with subtraction
	RL $={ }^{8} \mathrm{C}_{2}=28$	M1*	Considering both in team
	210-28	DM1	subt
	$=182$ ways	A1)	

Question	Answer	Marks	
$6(\mathrm{~b})$	OR2: R out in ${ }^{9} \mathrm{C}_{4}=126$ ways L out in ${ }^{9} \mathrm{C}_{4}=126$ ways	(M1	Considering either R out or L out
	Both out in ${ }^{8} \mathrm{C}_{4}=70$	M1*	Considering both out
		DM1	Summing 2 scenarios and subtracting 1 scenario
	$126+126-70=182$ ways.	A1)	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & \mathrm{P}(<570)=\mathrm{P}\left(z<\frac{570-500}{91.5}\right)=\mathrm{P}(z<0.7650) \\ & =0.7779 \end{aligned}$	M1	Standardising for either 570 or 390 , no cc, no sq, no $\sqrt{ }$
	$\mathrm{P}(<390)=\mathrm{P}\left(z<\frac{390-500}{91.5}\right)=\mathrm{P}(z<-1.202)$	A1	One correct z value
	$=1-0.8853=0.1147$	A1	One correct Φ, final solution
	Large:0.222 (0.2221) Small: 0.115 (0.1147)	A1	Correct small and large
	Medium: 0.663 (0.6632)	A1FT	Correct Medium rounding to 0.66 or $\mathrm{ft} 1-$ (their small + their large)
		5	

Question	Answer	Marks	Guidance
7(ii)	$1.645=\left(\frac{x-500}{91.5}\right)$	B1	± 1.645 seen (critical value)
		M1	Standardising accept cc, sq, sq rt
	$x=651$	A1	$650 \leqslant$ Ans $\leqslant 651$
		3	
7(iii)	$\mathrm{P}(x>610)=0.1147$ (symmetry)	M1	Attempt to find upper end prob $x>610$ or $\Phi(x)$, ft their $\mathrm{P}(<390)$ from (i)
	$0.3+0.1147=0.4147 \Rightarrow \Phi(x)=0.5853$	M1	Adding 0.3 to their $\mathrm{P}(x>610)$ or subt 0.5 from $\Phi(x)$ or $0.8853-0.3$
	$z=0.215$ or 0.216	M1	Finding $z=\Phi^{-1}(0.5853)$
	$0.215=\frac{k-500}{91.5}$	M1	Standardising and solving, accept cc, sq, sq rt
	$k=520$	A1	
		5	

