Question	Answer	Marks	Guidance
1	$0.2 \mathrm{d}v/\mathrm{d}t = t \mathrm{e}^{-v}$	M1	Uses Newton's Second Law to set up a differential equation. Allow <i>a</i> for dv/dt .
	$\int e^{v} dv = 5 \int t dt \text{ leading to } e^{v} = 5 t^{2}/2 (+c)$	M1	Separates the variables and integrates.
	$e^{v} - 1 = 2.5 t^{2}$	A1	Substitutes $t = 0, v = 0$.
	$v(2) = \ln 11 = 2.4$	A1	
		4	

Question	Answer	Marks	Guidance
2	$0.15W + 0.3(60 - W) = 0.25 \times 60$	M1A1	Attempts to take moments about the base of the cone. W = weight of the cone.
	W = 20 N	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$0.4v dv/dx = 0.4g \sin 30 - 0.2 v^2$	M1	Uses Newton's Second Law down the plane. Allow a for vdv/dx .
	$v dv/dx = 5 - 0.5 v^2$	A1	AG
		2	
3(ii)	$\int v / (5 - 0.5v^2) \mathrm{d}v = \int x \mathrm{d}x$	M1	Separates the variables and attempts to integrate.
	$-\ln(5 - 0.5v^2) = x(+c)$	A1	
	$c = -\ln 5 [5 - 0.5 v^2 = 5 e^{-x}]$	M1	Puts $x = 0$, $v = 0$ to find c and attempts to solve for v .
	$v = \sqrt{(10 - 10e^{-x})}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$e = \sqrt{(0.5^2 + 1.2^2)} - 1 = 0.3$	B1	
	$T = 39 \times 0.3/1$	M1	Uses $T = \lambda x/L$.
	$mg = 2 \times (39 \times 0.3/1) \times 0.5/1.3$	M1	Resolves vertically.
	m = 0.9	A1	AG
		4	
4(ii)	$E = \sqrt{(1.6^2 + 1.2^2)} - 1 = 1 \text{ m}$	B1	E = extension when the particle comes to instantaneous rest.
	$EE = 39 \times 1^2 / (2 \times 1) \text{ or } 39 \times 0.3^2 / (2 \times 1)$	B1	
	$0.9 v^2 / 2 + 0.9g(1.6 - 0.5)$ = 2[39 × 1 ² /(2 × 1) - 39 × 0.3 ² /(2 × 1)]	M1A1	Set up a 4 term energy equation involving <i>EE</i> , <i>KE</i> and <i>PE</i> .
	$v = 7.54 \text{ m s}^{-1}$	A1	
		5	

Question	Answer	Marks	Guidance
5(i)	$OG = 2 \times 0.8 \sin(\pi/4)/(3\pi/4)$ (0.48016m)	B1	
	$AG^{2} = (0.8\sin45)^{2} + (0.8\cos45 - OG)^{2}$ OR $AG^{2} = 0.8^{2} + OG^{2} - 2 \times 0.8 \times OG\cos45$	M1	Uses Pythagoras's Theorem OR the cosine formula.
	AG = 0.572(11) m	A1	
		3	
5(ii)	$\tan BAG = (0.8\cos 45 - OG)/(0.8\sin 45)$	M1	Uses trigonometry to find angle <i>BAG</i> .
	$BAG = 8.5965^{\circ} = 8.6(0)^{\circ}$	A1	
	$W \times AG = 12 \times 2 \times 0.8 \sin 45 \times \sin BAG$	M1	Takes moments about A.
	$0.572W = 12 \times 2 \times 0.8 \sin 45 \times \sin 8.6$	A1FT	
	W = 3.55 N	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	$T = 0.2 \times 2.5^2 / (0.4 + e)$	B1	Uses Newton's Second Law towards the centre of the circle.
	T = 8e/0.4	B1	Uses $T = \lambda x/L$.
	$1.25/(0.4+e) = 20e \rightarrow 20e^2 + 8e - 1.25 = 0$	M1	Eliminates <i>T</i> to find <i>e</i> .
	e = 0.12(0) m	A1	
		4	
6(ii)	$0.2 v^2 / 2 = 2[8 x^2 / (2 \times 0.4)]$	B1	Uses $KE = 2EE$.
	$0.2 v^2 / (0.4 + x) = 8x/0.4$	B1	Uses $T = \lambda x/L$ and $T = m v^2/r$.
		M1	Attempts to solve the 2 equations to find v or x .
	$x = 0.4$ and $v = 5.66$ or $4\sqrt{2}$	A1A1	
		5	

Question	Answer	Marks	Guidance
7(i)	$U_H = 18\cos 30$ and $U_V = 18\sin 30 + 2g(=29)$	B1	
	$U = \sqrt{[(18\cos 30)^2 + 29^2]}$ or $\tan\theta = 29/(18\cos 30)$	M1	Uses Pythagoras's Theorem and trigonometry.
	$U = 32.9(24) \mathrm{m}\mathrm{s}^{-1}$	A1	
	$\theta = 61.7^{\circ}$	A1	
		4	
7(ii)	$v^2 = 38^2 - (18\cos 30)^2 = (+/-29)^2 + 2gh$	M1	Uses 2 ways to find v, the vertical velocity at the ground and equates.
	h = 18	A1	
	OR $mgh + m \times 32.924^2 / 2 = m \times 38^2 / 2$	M1	
	h = 18	A1	
		2	

Question	Answer	Marks	Guidance
7(iii)	$-\sqrt{[(38^2 - (18\cos 30)^2]} = 29 - gt$	M1	Uses $v = u + at$ for first part of flight.
	t = 6.36(6)	A1	
	$v = \sqrt{[20^2 - (18\cos 30)^2]} = 12.5(3)$ -12.5(3)= 12.5(3) - gt'	M1	Uses $v = u + at$ for second part of flight.
	t' = 2.50(6)	A1	
	T(=6.366+2.506)=8.87	A1	
		5	