Question	Answer	Marks	Guidance
1	$(X=) 20 \cos 60+30 \cos 60-F$	B1	
	$[F=20 \cos 60+30 \cos 60]$	M1	Use of horizontal component of resultant $=0$
	$F=25$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
2(i)	$[F=1480+7850 g \sin 3](=5588)$	M1	
	$\left[\frac{P}{10}=1480+7850 g \sin 3\right] \rightarrow P=\ldots$	M1	Using $P=F v$ and solving for P
	Power $=55900 \mathrm{~W}$	A1	
		3	
2(ii)	$\begin{aligned} & {[F+7850 g \sin 3-1480=7850 \times 0.8]} \\ & (F=3652) \end{aligned}$	M1	Use of Newton's Second Law
	$\begin{aligned} & {\left[\frac{P}{15}+7850 g \sin 3-1480=7850 \times 0.8\right]} \\ & \rightarrow P=\ldots \end{aligned}$	M1	Using $P=F v$ and solving for P
	Power $=54800 \mathrm{~W}$	A1	
		3	

Question	Answer	Marks	Guidance
$3(\mathrm{i})$	$R=m g \cos 25$	$\mathbf{B 1}$	
	$[F=0.4 m g \cos 25]$	M1	Using $F=\mu R$
	$[m g \sin 25-0.4 m g \cos 25=m a]$	$\mathbf{M 1}$	Use of Newton's Second Law
	$a=0.601 \mathrm{~ms}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{4}$	
	$\left[s=1 / 2 \times 0.601 \times 3^{2}\right]$	M1	Use of $s=u t+1 / 2 a t^{2}$
	Distance $=2.70 \mathrm{~m}$	A1 FT	FT $4.5 \times a$ from (\mathbf{i})
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
4(i)	EITHER: $[T-0.35 g=0.35 a$ or $0.45 \mathrm{~g}-T=0.45 a$ or $0.45 g-0.35 g=0.8 a]$	(M1	Applies Newton's Second Law to one of the particles or forms system equation in $a\left(m_{\mathrm{B}} g-m_{\mathrm{A}} g=\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) a\right)$
	$\begin{aligned} & {[0.45 g-T=0.45 a} \\ & \text { or } T-0.35 g=0.35 a] \rightarrow a=\ldots \end{aligned}$	M1	Applies Newton's Second Law to form second equation in T and a and solves for a or solves system equation for a
	$a=1.25 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
	$\left[\nu^{2}=2 \times 1.25 \times 0.64\right] \quad(=1.6)$	M1	Using $v^{2}=u^{2}+2 a s$
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
	$\begin{aligned} & \text { OR: } \\ & {[\mathrm{PE} \text { loss }=0.45 g \times 0.64-0.35 g \times 0.64]} \end{aligned}$	(M1	Attempts PE loss
	$\left[\right.$ KE gain $\left.=1 / 2(0.35+0.45) v^{2}\right]$	M1	Attempts KE gain
	PE loss $=0.45 g \times 0.64-0.35 g \times 0.64$ and KE gain $=1 / 2(0.35+0.45) v^{2}$	A1	
	$\left[1 / 2(0.8) v^{2}=0.1 \mathrm{~g} \times 0.64\right] \quad\left(v^{2}=1.6\right)$	M1	Using PE loss = KE gain
	Velocity $=1.26 \mathrm{~ms}^{-1}$	A1)	
		5	
4(ii)	EITHER: $[0=1.6-2 \mathrm{~g} s] \quad(s=0.08)$	(M1	Using $v^{2}=u^{2}+2 a s$
	Distance $=0.16 \mathrm{~m}$	A1)	
	OR: $[0.35 g h=1 / 2(0.35) \times 1.6] \quad(h=0.08)$	(M1	Using PE gain = KE loss for particle A
	Distance $=0.16 \mathrm{~m}$	A1)	
		2	

Question	Answer	Marks	Guidance
5(i)	$\begin{aligned} v & =\int k\left(3 t^{2}-12 t+2\right) \mathrm{d} t \\ & =k\left(3 t^{3} / 3-12 t^{2} / 2+2 t\right)+C \end{aligned}$	*M1	Use of $v=\int a \mathrm{~d} t$
	$v=k\left(t^{3}-6 t^{2}+2 t\right)+C$	A1	Condone C missing
	$C=0.4$	B1	
	$0.1=k(1-6+2)+0.4 \quad[-0.3=-3 k]$	DM1	Substitutes $t=1, v=0.1$
	$k=0.1$	A1	AG
		5	
5(ii)	$\begin{aligned} & {\left[s=\int 0.1\left(t^{3}-6 t^{2}+2 t\right)+0.4 \mathrm{~d} t\right.} \\ & \left.=0.1\left(t^{4} / 4-6 t^{3} / 3+2 t^{2} / 2\right)+0.4 t+C\right] \end{aligned}$	M1	Use of $s=\int v \mathrm{~d} t$
	$s=0.025 t^{4}-0.2 t^{3}+0.1 t^{2}+0.4 t$	A1	$C=0$ seen or implied
		2	
5(iii)	Substitutes $t=2$ to show $s=0$	B1	AG
		1	

Question	Answer	Marks	Guidance
6 (i)	[Area $=1 / 2(10+4) \times 6=42 \mathrm{~m}]$ Displacement $=42 \mathrm{~m}$	B1	
		1	
6(ii)	$\begin{aligned} & \frac{v}{2}=\frac{6}{4} \\ & \text { or }[\text { gradient }=1.5, v=6+1.5 \times 6] \end{aligned}$	M1	Using similar triangles or using acceleration $=$ gradient and $v=u+a t$
	$v=3 \mathrm{~ms}^{-1}$	A1	
		2	
6(iii)	Total distance travelled $=42+1 / 2(T-10) \times 3$	B1 FT	Area found with FT distance from (i) and FT speed from (ii)
	$[42+1 / 2(T-10) \times 3=49.5] \rightarrow T=\ldots$	M1	For equation and solving for T
	$T=15 \mathrm{~s}$	A1	
		3	

Question	Answer	Marks	Guidance
6(iv)	$V=1.75 \times 4=7 \mathrm{~ms}^{-1}$	B1	
	Q travels $[1 / 2(13+6) \times 7=66.5 \mathrm{~m}]$ Distance apart $=[66.5+42-7.5]$	$\mathbf{M 1}$	Finding area for Q and interpreting total distance between particles
	Distance between P and $Q=101 \mathrm{~m}$	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	$R=0.2 g \cos 30-T \sin 15$	B1	
	$[F=0.3 \times(0.2 g \cos 30-T \sin 15)]$	M1	Use of $F=\mu R$
		M1	For resolving along the plane
	$\begin{aligned} & T \cos 15+0.3 \times(0.2 g \cos 30-T \sin 15) \\ & =0.2 g \sin 30 \end{aligned}$	A1	
		M1	For solving a 4 term equation for T
	$T=0.541$	A1	
		6	
7(ii)	$0.3 \times 0.2 g \cos 30 \times 3 \quad[=1.5588 \mathrm{~J}]$	B1	WD against $F=$ friction \times distance
	$\mathrm{WD}=0.25 \times 3 \quad[=0.75 \mathrm{~J}]$	B1	WD against 0.25 force
	$0.2 g \times 3 \sin 30 \quad[=3 \mathrm{~J}]$	B1	PE loss $=m g h$
	$\left[1 / 2(0.2) v^{2}=3-1.5588-0.75\right]$	M1	Work/Energy equation
	Speed $=2.63 \mathrm{~ms}^{-1}$	A1	
		5	

