Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
1	$(X=) 20 \cos 60 + 30 \cos 60 - F$	B1	
	$[F = 20\cos 60 + 30\cos 60]$	M1	Use of horizontal component of resultant = 0
	<i>F</i> = 25	A1	
		3	

Question	Answer	Marks	Guidance
2(i)	$[F = 1480 + 7850g\sin 3] (= 5588)$	M1	
	$\left[\frac{P}{10} = 1480 + 7850g\sin 3\right] \rightarrow P = \dots$	M1	Using $P = Fv$ and solving for P
	Power = 55 900 W	A1	
		3	
2(ii)	$[F + 7850g \sin 3 - 1480 = 7850 \times 0.8]$ (F = 3652)	M1	Use of Newton's Second Law
	$\begin{bmatrix} \frac{P}{15} + 7850g \sin 3 - 1480 = 7850 \times 0.8 \end{bmatrix}$ $\rightarrow P = \dots$	M1	Using $P = Fv$ and solving for P
	Power = 54800 W	A1	
		3	

Question	Answer	Marks	Guidance
3(i)	$R = mg \cos 25$	B1	
	$[F = 0.4mg\cos 25]$	M1	Using $F = \mu R$
	$[mg\sin 25 - 0.4mg\cos 25 = ma]$	M1	Use of Newton's Second Law
	$a = 0.601 \text{ ms}^{-2}$	A1	
		4	
3(ii)	$[s = \frac{1}{2} \times 0.601 \times 3^2]$	M1	Use of $s = ut + \frac{1}{2}at^2$
	Distance = 2.70 m	A1 FT	FT 4.5 × <i>a</i> from (i)
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(i)	EITHER: [T-0.35g = 0.35a] or $0.45g - T = 0.45a$ or $0.45g - 0.35g = 0.8a]$	(M1	Applies Newton's Second Law to one of the particles or forms system equation in $a (m_Bg - m_Ag = (m_A + m_B)a)$
	[0.45g - T = 0.45a] or $T - 0.35g = 0.35a] \rightarrow a =$	M1	Applies Newton's Second Law to form second equation in T and <i>a</i> and solves for <i>a</i> or solves system equation for <i>a</i>
	$a = 1.25 \text{ m s}^{-2}$	A1	
	$[v^2 = 2 \times 1.25 \times 0.64] (= 1.6)$	M1	Using $v^2 = u^2 + 2as$
	$Velocity = 1.26 \text{ ms}^{-1}$	A1)	
	<i>OR:</i> [PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$]	(M1	Attempts PE loss
	[KE gain = $\frac{1}{2}$ (0.35 + 0.45) v^2]	M1	Attempts KE gain
	PE loss = $0.45g \times 0.64 - 0.35g \times 0.64$ and KE gain = $\frac{1}{2}(0.35 + 0.45)v^2$	A1	
	$[\frac{1}{2} (0.8) v^2 = 0.1g \times 0.64] (v^2 = 1.6)$	M1	Using PE loss = KE gain
	Velocity = 1.26 ms^{-1}	A1)	
		5	
4(ii)	<i>EITHER:</i> [0 = 1.6 - 2 gs] (s = 0.08)	(M1	Using $v^2 = u^2 + 2as$
	Distance = 0.16 m	A1)	
	<i>OR</i> : [0.35gh = $\frac{1}{2}$ (0.35) × 1.6] (h = 0.08)	(M1	Using PE gain = KE loss for particle A
	Distance = 0.16 m	A1)	
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
5(i)	$v = \int k(3t^2 - 12t + 2) dt$ = $k(3t^3/3 - 12t^2/2 + 2t) + C$	*M1	Use of $v = \int a \mathrm{d}t$
	$v = k\left(t^3 - 6t^2 + 2t\right) + C$	A1	Condone C missing
	<i>C</i> = 0.4	B1	
	0.1 = k(1 - 6 + 2) + 0.4 [-0.3 = -3k]	DM1	Substitutes $t = 1, v = 0.1$
	<i>k</i> = 0.1	A1	AG
		5	
5(ii)	$[s = \int 0.1(t^3 - 6t^2 + 2t) + 0.4 dt$ = 0.1(t ⁴ /4 - 6t ³ /3 + 2t ² /2) + 0.4t + C]	M1	Use of $s = \int v dt$
	$s = 0.025t^4 - 0.2t^3 + 0.1t^2 + 0.4t$	A1	C = 0 seen or implied
		2	
5(iii)	Substitutes $t = 2$ to show $s = 0$	B1	AG
		1	

Question	Answer	Marks	Guidance
6(i)	$[Area = \frac{1}{2} (10 + 4) \times 6 = 42 \text{ m}]$ Displacement = 42 m	B1	
		1	
6(ii)	$\frac{v}{2} = \frac{6}{4}$ or [gradient =1.5, v = 6 + 1.5 × 6]	M1	Using similar triangles or using acceleration = gradient and $v = u + at$
	$v = 3 \text{ ms}^{-1}$	A1	
		2	
6(iii)	Total distance travelled = $42 + \frac{1}{2}(T - 10) \times 3$	B1 FT	Area found with FT distance from (i) and FT speed from (ii)
	$[42 + \frac{1}{2}(T - 10) \times 3 = 49.5] \rightarrow T = \dots$	M1	For equation and solving for <i>T</i>
	<i>T</i> = 15 s	A1	
		3	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(iv)	$V = 1.75 \times 4 = 7 \text{ ms}^{-1}$	B1	
	Q travels [½ (13 + 6) × 7 = 66.5 m] Distance apart = [66.5 + 42 - 7.5]	M1	Finding area for <i>Q</i> and interpreting total distance between particles
	Distance between <i>P</i> and $Q = 101$ m	A1	
		3	

Question	Answer	Marks	Guidance
7(i)	$R = 0.2g\cos 30 - T\sin 15$	B1	
	$[F = 0.3 \times (0.2g \cos 30 - T \sin 15)]$	M1	Use of $F = \mu R$
		M1	For resolving along the plane
	$T\cos 15 + 0.3 \times (0.2g\cos 30 - T\sin 15) = 0.2g\sin 30$	A1	
		M1	For solving a 4 term equation for <i>T</i>
	T = 0.541	A1	
		6	
7(ii)	$0.3 \times 0.2g \cos 30 \times 3$ [= 1.5588 J]	B1	WD against $F =$ friction \times distance
	WD = 0.25×3 [= 0.75 J]	B1	WD against 0.25 force
	$0.2g \times 3 \sin 30 [= 3 \text{ J}]$	B1	PE loss = mgh
	$[\frac{1}{2}(0.2) v^2 = 3 - 1.5588 - 0.75]$	M1	Work/Energy equation
	Speed = 2.63 ms^{-1}	A1	
		5	