Question	Answer	Marks	Guidance
1(i)	$F=0.2 g \sin 20=0.684 \mathrm{~N}$	B1	AG
		1	
1(ii)	$R=0.2 g \cos 20$	B1	
	$F=\mu R[=0.6 \times 0.2 g \cos 20]$	M1	Using $F=\mu R \quad F=1.1276 \ldots$
	$[0.9+0.2 g \sin 20-F=0.2 a]$	M1	Use of Newton's 2nd law along the plane (4 relevant terms)
	$a=2.28 \mathrm{~ms}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
2	EITHER:	(M1	Attempt to resolve (either direction with correct number of terms and dimensionally correct)
	$T \sin \theta+120 \sin 45=15 g$	A1	Resolving vertically
	$T \cos \theta=120 \cos 45$	A1	Resolving horizontally
	$\begin{aligned} & {\left[\tan \theta=\frac{(15 g-120 \sin 45)}{(120 \cos 45)}\right.} \\ & \text { or } \left.T=\sqrt{65.15^{2}+84.85^{2}}\right] \end{aligned}$	M1	For using division to find θ or for using Pythagoras to find T
	$\theta=37.5$	A1	
	$T=107$	A1)	
	ORI: $\frac{120}{\sin (90+\theta)}=\frac{T}{\sin 135}=\frac{15 g}{\sin (135-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta=37.5$	A1	
	$T=107$	A1	
		M1)	Attempt to use triangle of forces

Question	Answer	Marks	Guidance
	OR2: $\frac{T}{\sin 45}=\frac{15 g}{\sin (45+\theta)}=\frac{120}{\sin (90-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta=37.5$	A1	
	$T=107$	A1)	
	OR3: $\left[T^{2}=150^{2}+120^{2}-2(150)(120) \cos 45\right]$	(M1	Use cosine rule in a triangle with sides 120, 150 and T and with corresponding angles $90-\theta, 45+\theta, 45$
		A1	Correct equation
	$T=107$	A1	
		M1	Use sin rule or cosine rule in an attempt to find θ
	$120 / \sin (90-\theta)=106.97 / \sin 45$	A1	A correct equation in θ such as this
	$\theta=37.5$	A1)	
		6	

Question	Answer	Marks	Guidance
3(i)	$s_{A B}=14 \times 5+1 / 2 a \times 5^{2}$	B1	or $s_{A B}=1 / 2(14+14+5 a) \times 5 \quad \mathrm{OE}$
	$s_{A C}=14 \times 8+1 / 2 a \times 8^{2}$	B1	or $s_{A C}=1 / 2(14+14+8 a) \times 8 \quad$ OE
	$[112+32 a=2(70+12.5 a)]$	M1	Using $A C=2 A B$ and solving for a or for substituting $a=4$ and finding $A B$ and $A C$
	$a=4 \mathrm{~m} \mathrm{~s}^{-2}$	A1	AG, If substituting $a=4$ must show $A B=120$ and $A C=240 \quad \mathrm{OE}$
		4	
3(ii)	$[v=14+4 \times 8]$	M1	Use of $v=u+a t$ or any complete method to find v
	Velocity $=46 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
$4(\mathrm{i})$	$\left[12 t-1 / 2 g t^{2}=0\right]$ or $[0=12-g T]$ with $t=2 T$ used	M1	Using $s=u t+1 / 2 a t^{2}$ or equivalent such as finding time T to highest point and doubling.
	$t=2.4 \mathrm{~s}$	A1	
		$\mathbf{2}$	
	Critical point at $t=1.2$	B1	Seen in 4(ii)
	Critical point at $t=2$	B1	Seen in 4(ii)
	Both moving in same direction $1<t<1.2$	B1	
	Both moving in same direction $2<t<2.4$	$\mathbf{4}$	

Question	Answer	Marks	Guidance
5(i)	EITHER: $\text { Resistance force }=\frac{600}{25}=24 \mathrm{~N}$	(B1	
	$\begin{aligned} \text { Weight component } & =80 g(0.04) \\ & =32 \mathrm{~N} \end{aligned}$	B1	For correct unsimplified numerical form of the weight component
	[Power $=56 \times 4]$	M1	For use of $P=F v$ where F is from two relevant force terms
	Power $=224 \mathrm{~W}$	A1)	
		4	
	OR: $\begin{aligned} \text { PE gain } & =80 g \times 25(0.04) \\ & =800 \end{aligned}$	(B1	For a correct unsimplified numerical expression for PE
	Time taken $=\frac{25}{4}=6.25$	B1	
	[WD by cyclist $=P \times 6.25=800+600]$	M1	For using $\mathrm{WD}=P \times t$ where WD is from two relevant terms
	Power $=224 \mathrm{~W}$	A1)	
		4	

Question	Answer	Marks	Guidance
5(ii)	Work done by cyclist $=224 \times 10(=2240 \mathrm{~J})$	B1 FT	For stating WD $=$ power \times time FT on P value found in $\mathbf{5 (i)}$
	Initial $\mathrm{KE}=1 / 2 \times 80 \times 4^{2}[=640 \mathrm{~J}]$	B1	
	$\left[1 / 2 \times 80 v^{2}=640+P \times 10-1200\right]$	M1	For using Work/Energy equation
	Speed $=6.48 \mathrm{~m} \mathrm{~s}^{-1}$	A1	Allow speed $=\sqrt{ } 42$
		4	

Question	Answer	Marks	Guidance
6(i)	$R=m g \cos \alpha \quad(R=9.6 m)$	B1	Allow use of $\alpha=16.3^{\circ}$ throughout
	$\begin{aligned} & {[T=m g} \\ & F=m g \sin \alpha+T] \end{aligned}$	M1	For resolving forces on P and Q and eliminating T or for considering the equilibrium of the system
	$F=m g \sin \alpha+m g$	A1	($F=12.8 m$)
		M1	For use of $F=\mu R$
	Coefficient of friction $=11 / 3=\frac{4}{3}$	A1	AG so must be from exact working
		5	

Question	Answer	Marks	Guidance
6(ii)	EITHER: P equation is $10-m g \sin \alpha-F-T=2.5 m$ Q equation is $T-m g=2.5 m$	(*M1	For applying Newton's 2nd law to P (5 terms) or Q (3 terms)
		*M1	For applying Newton's 2nd law to the other particle and eliminate T
	$\begin{aligned} & 10-m g \sin \alpha-\mu m g \cos \alpha \\ & -m g=2 m(2.5) \end{aligned}$	A1	If evaluated then this is $10-2.8 m-12.8 m-10 m=5 m$
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	$\text { Allow } m=\frac{50}{153}$
	$\begin{aligned} & \text { OR: } \\ & {[10-m g \sin \alpha-F-m g=m(2.5+2.5)]} \end{aligned}$	(*M1	For applying Newton's 2nd law to the system. Allow with 5 terms
		*M1	System equation with all 6 terms
	$\begin{aligned} & 10-m g \sin \alpha-\mu m g \cos \alpha \\ & -m g=2 m(2.5) \end{aligned}$	A1	
		DM1	For solving this equation for m as far as $m=$ Dependent on one or other of the previous M marks having been scored
	$m=0.327$	A1)	$\text { Allow } m=\frac{50}{153}$
		5	

Question	Answer	Marks	Guidance
7(i)	$\begin{aligned} & -0.01 t\left(t^{2}-22 t+40\right)=0 \\ & -0.01 t(t-20)(t-2)=0 \end{aligned}$	M1	Attempting to solve $v=0$ for t for a solvable quadratic using factors or quadratic formula and obtaining two nonzero solutions
	$t=2$ or $t=20$	A1	
		2	
7(ii)	$a=-0.03 t^{2}+0.44 t-0.4$	M1	For differentiation
	a is greatest (maximum) when $0.44-0.06 t=0$	M1	For differentiation or finding values of $t=t_{1}$ and $t=t_{2}$ where $a=0$ and using $t=1 / 2\left(t_{1}+t_{2}\right)$ or completing the square or other method to find maximum value
	Max acceleration when $t=7.33$	A1	$\text { Allow } t=\frac{22}{3}$
		3	
7(iii)	$\int\left(-0.01 t^{3}+0.22 t^{2}-0.4 t\right) \mathrm{d} t$	*M1	For using integration.
	$s(t)=-\frac{0.01}{4} t^{4}+\frac{0.22}{3} t^{3}-0.2 t^{2}$	A1	Correct Integration Allow $+C$ included
	$s(20)-s(2)$	DM1	Limits 2 and 20 used correctly Dependent on previous M1 having been scored
	Distance $=107 \mathrm{~m}$	A1	$\text { Distance }=\frac{2673}{25}=106.92$
		4	

