9709/42

Question	Answer	Marks	Guidance
1(i)	$F = 0.2g \sin 20 = 0.684$ N	B1	AG
		1	
1(ii)	$R = 0.2g \cos 20$	B1	
	$F = \mu R \left[= 0.6 \times 0.2g \cos 20\right]$	M1	Using $F = \mu R$ $F = 1.1276$
	$[0.9 + 0.2g\sin 20 - F = 0.2a]$	M1	Use of Newton's 2nd law along the plane (4 relevant terms)
	$a = 2.28 \text{ ms}^{-2}$	A1	
		4	

Question	Answer	Marks	Guidance
2	EITHER:	(M1	Attempt to resolve (either direction with correct number of terms and dimensionally correct)
	$T\sin\theta + 120\sin45 = 15g$	A1	Resolving vertically
	$T\cos\theta = 120\cos45$	A1	Resolving horizontally
	$[\tan \theta = \frac{(15g - 120\sin 45)}{(120\cos 45)}$ or $T = \sqrt{65.15^2 + 84.85^2}$]	M1	For using division to find θ or for using Pythagoras to find <i>T</i>
	$\theta = 37.5$	A1	
	<i>T</i> = 107	A1)	
	$\frac{OR1:}{\sin(90+\theta)} = \frac{T}{\sin 135} = \frac{15g}{\sin(135-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta = 37.5$	A1	
	<i>T</i> = 107	A1	
		M1)	Attempt to use triangle of forces

Question	Answer	Marks	Guidance
	$\frac{OR2:}{\frac{T}{\sin 45}} = \frac{15g}{\sin(45+\theta)} = \frac{120}{\sin(90-\theta)}$	(A1	One correct equation
		A1	A second correct equation
		M1	Attempt to solve for θ or T
	$\theta = 37.5$	A1	
	T = 107	A1)	
	OR3: $[T^2 = 150^2 + 120^2 - 2(150)(120)\cos 45]$	(M1	Use cosine rule in a triangle with sides 120, 150 and <i>T</i> and with corresponding angles $90 - \theta$, $45 + \theta$, 45
		A1	Correct equation
	<i>T</i> = 107	A1	
		M1	Use sin rule or cosine rule in an attempt to find θ
	$120/\sin(90-\theta) = 106.97/\sin 45$	A1	A correct equation in θ such as this
	$\theta = 37.5$	A1)	
		6	

Question	Answer	Marks	Guidance
3(i)	$s_{AB} = 14 \times 5 + \frac{1}{2}a \times 5^2$	B1	or $s_{AB} = \frac{1}{2}(14 + 14 + 5a) \times 5$ OE
	$s_{AC} = 14 \times 8 + \frac{1}{2}a \times 8^2$	B1	or $s_{AC} = \frac{1}{2}(14 + 14 + 8a) \times 8$ OE
	[112 + 32a = 2(70 + 12.5a)]	M1	Using $AC = 2AB$ and solving for <i>a</i> or for substituting $a = 4$ and finding <i>AB</i> and <i>AC</i>
	$a = 4 \text{ m s}^{-2}$	A1	AG, If substituting $a = 4$ must show AB = 120 and $AC = 240$ OE
		4	
3(ii)	$[v = 14 + 4 \times 8]$	M1	Use of $v = u + at$ or any complete method to find v
	Velocity = 46 m s^{-1}	A1	
		2	

Question	Answer	Marks	Guidance
4(i)	$[12t - \frac{1}{2}gt^2 = 0]$ or [0 = 12 - gT] with $t = 2T$ used	M1	Using $s = ut + \frac{1}{2}at^2$ or equivalent such as finding time <i>T</i> to highest point and doubling.
	t = 2.4 s	A1	
		2	
4(ii)	Critical point at $t = 1.2$	B1	Seen in 4(ii)
	Critical point at $t = 2$	B1	Seen in 4(ii)
	Both moving in same direction $1 < t < 1.2$	B1	
	Both moving in same direction $2 < t < 2.4$	B1	
		4	

Question	Answer	Marks	Guidance
5(i)	EITHER: Resistance force = $\frac{600}{25}$ = 24 N	(B1	
	Weight component = $80 g (0.04)$ = $32 N$	B1	For correct unsimplified numerical form of the weight component
	$[Power = 56 \times 4]$	M1	For use of $P = Fv$ where F is from two relevant force terms
	Power = 224 W	A1)	
		4	
	$ \begin{array}{l} OR: \\ PE \text{ gain } = 80g \times 25 \ (0.04) \\ = 800 \end{array} $	(B1	For a correct unsimplified numerical expression for PE
	Time taken = $\frac{25}{4} = 6.25$	B1	
	[WD by cyclist = $P \times 6.25 = 800 + 600$]	M1	For using $WD = P \times t$ where WD is from two relevant terms
	Power = 224 W	A1)	
		4	

Question	Answer	Marks	Guidance
5(ii)	Work done by cyclist = 224×10 (= $2240J$)	B1 FT	For stating WD = power \times time FT on <i>P</i> value found in 5(i)
	Initial KE = $\frac{1}{2} \times 80 \times 4^2$ [= 640 J]	B1	
	$[\frac{1}{2} \times 80v^2 = 640 + P \times 10 - 1200]$	M1	For using Work/Energy equation
	Speed = 6.48 m s^{-1}	A1	Allow speed = $\sqrt{42}$
		4	

Question	Answer	Marks	Guidance
6(i)	$R = mg \cos \alpha (R = 9.6m)$	B1	Allow use of $\alpha = 16.3^{\circ}$ throughout
	$\begin{bmatrix} T = mg \\ F = mg \sin \alpha + T \end{bmatrix}$	M1	For resolving forces on <i>P</i> and <i>Q</i> and eliminating <i>T</i> or for considering the equilibrium of the system
	$F = mg\sin\alpha + mg$	A1	(F = 12.8m)
		M1	For use of $F = \mu R$
	Coefficient of friction = $1\frac{1}{3} = \frac{4}{3}$	A1	AG so must be from exact working
		5	

9709/42

Question	Answer	Marks	Guidance
6(ii)	<i>EITHER:</i> <i>P</i> equation is $10 - mg \sin \alpha - F - T = 2.5 m$	(*M1	For applying Newton's 2nd law to P (5 terms) or Q (3 terms)
	Q equation is T - mg = 2.5m		
		*M1	For applying Newton's 2nd law to the other particle and eliminate <i>T</i>
	$10 - mg \sin \alpha - \mu mg \cos \alpha$ $- mg = 2m (2.5)$	A1	If evaluated then this is 10 - 2.8m - 12.8m - 10m = 5m
		DM1	For solving this equation for m as far as m = Dependent on one or other of the previous M marks having been scored
	m = 0.327	A1)	Allow $m = \frac{50}{153}$
	<i>OR:</i> [10 - $mg \sin \alpha - F - mg = m(2.5 + 2.5)$]	(*M1	For applying Newton's 2nd law to the system. Allow with 5 terms
		*M1	System equation with all 6 terms
	$10 - mg \sin \alpha - \mu mg \cos \alpha$ $- mg = 2m (2.5)$	A1	
		DM1	For solving this equation for m as far as m = Dependent on one or other of the previous M marks having been scored
	m = 0.327	A1)	Allow $m = \frac{50}{153}$
		5	

Question	Answer	Marks	Guidance
7(i)	$-0.01t(t^{2} - 22t + 40) = 0$ -0.01t(t - 20)(t - 2) = 0	M1	Attempting to solve $v = 0$ for t for a solvable quadratic using factors or quadratic formula and obtaining two non-zero solutions
	t = 2 or t = 20	A1	
		2	
7(ii)	$a = -0.03t^2 + 0.44t - 0.4$	M1	For differentiation
	<i>a</i> is greatest (maximum) when 0.44 - 0.06t = 0	M1	For differentiation or finding values of $t = t_1$ and $t = t_2$ where $a = 0$ and using $t = \frac{1}{2}(t_1 + t_2)$ or completing the square or other method to find maximum value
	Max acceleration when $t = 7.33$	A1	Allow $t = \frac{22}{3}$
		3	
7(iii)	$\int \left(-0.01t^3 + 0.22t^2 - 0.4t \right) dt$	*M1	For using integration.
	$s(t) = -\frac{0.01}{4}t^4 + \frac{0.22}{3}t^3 - 0.2t^2$	A1	Correct Integration Allow $+ C$ included
	s(20) - s(2)	DM1	Limits 2 and 20 used correctly Dependent on previous M1 having been scored
	Distance = 107 m	A1	Distance = $\frac{2673}{25} = 106.92$
		4	