Question	Answer	Marks	Guidance
1	$[12\cos 25 = 3a]$	M1	For use of Newton's second law
	$a = 4 \cos 25 = 3.625$	A1	
	$[s = \frac{1}{2} \times 4\cos 25 \times 5^2]$	M1	For use of $s = ut + \frac{1}{2}at^2$ OE
	Distance = 45.3 m	A1	
		4	

Question	Answer	Marks	Guidance
2(i)	Power = $1150 \times 12 = 13800$ W	B1	For use of $P = F \times v$ Allow 13.8 kW
		1	
2(ii)	Driving force = $\frac{25000}{12}$	B1	Using $F = \frac{P}{v}$
	$\frac{25000}{12} - 1150 - 3700g\sin 4 = 3700a$	M1	For applying Newton's 2nd law up the slope, 4 terms
	$a = -0.445 \text{ m s}^{-2}$	A1	
		3	
2(iii)	$\frac{25000}{v} - 1150 - 3700g\sin 4 = 0$	M1	For stating the equation for constant v , with 3 terms, and solving for v
	$v = 6.70 \text{ m s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	640 × 18	M1	For use of work done = $F \times d$
	Work done = 11 520 J	A1	
		2	
3(ii)	KE at start = $\frac{1}{2} \times 840 \times 14^2 = 82\ 320\ J$	B1	
	PE gained = $840g \times 8\sin 30$ - $840g \times 10\sin 20 = 4870$ J	B1	
	$\frac{1}{2} \times 840 \times v^2 = 82\ 320 - 11\ 520 - 4870$	M1	For using work – energy equation with 4 terms and solving for v
	$v = 12.5 \text{ m s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	Acceleration = $\frac{(-25)}{2.5}$ = -10 m s ⁻²	B1	AG
		1	
4(ii)	$V = -15 + 7.5 \times 4$	M1	Using <i>v</i> – <i>t</i> graph OE
	$V = 15 \text{ m s}^{-1}$	A1	
		2	
4(iii)	Using $v = 0$ at $t = 4.5$ and $t = 8$	B1	
		M1	Attempting to use area to find total distance travelled
	$ \frac{\frac{1}{2} \times (4.5 + 2) \times 10}{\frac{1}{2} \times (8 - 4.5) \times 15} $ + $\frac{1}{2} \times (T - 8) \times 15 = 100 $	M1	For setting up an equation for total distance travelled and solving for <i>T</i>
	<i>T</i> = 13.5	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Acceleration = 0.4 m s^{-2}	B1	
		1	
5(ii)	$\frac{100}{t^2} - 0.1t = 0$	M1	For setting $v = 0$ and solving for t
	t = 10 s	A1	
		2	
5(iii)	Distance $t = 0$ to $t = 5$ is $\frac{1}{2}(1.5 + 3.5) \times 5 = 12.5$	B1	Trapezium rule or integration
	$s(t) = \int \left(\frac{100}{t^2} - 0.1t\right) dt$	M1	For integration
	$= -\frac{100}{t} - 0.05t^2 (+C)$	A1	Correct integration
	s(10)-s(5)	M1	Use limits 5 and 10 used or find $+ C$
	Total distance = $12.5 + 6.25 = 18.75$ m	A1	
		5	

9709/41

Question	Answer	Marks	Guidance
6(i)		M1	For resolving forces (either direction)
	$X = 75 + 50 \cos 60 (= 100)$ Y = 50 sin 60 (= 43.3)	A1	For both equations, unevaluated
	Resultant = $\sqrt{(100^2 + 43.3^2)} = 109$ N	B1	
	Angle = $\arctan\left(\frac{43.3}{100}\right) = 23.4^{\circ}$	B1	Must state anticlockwise from the positive <i>x</i> -axis or show in a diagram
		4	
6(ii)	$50\cos\alpha - F\cos 50 = 0$	B1	Resolving forces horizontally
	$50\sin\alpha - 3F - F\sin 50 = 0$	B1	Resolving forces vertically
	$\tan \alpha = \frac{(3F + F\sin 50)}{(F\cos 50)}$	M1	For division to find θ or for using Pythagoras to find <i>F</i>
	$\alpha = 80.3$	A1	
	<i>F</i> = 13.1	A1	
		5	

Question	Answer	Marks	Guidance
7(i)		M1	For applying Newton's 2nd law to either particle (correct number of terms)
	$T - 0.9 g \sin 15 = 0.9a$	A1	
	$2.5 + 0.4 g \sin 25 - T = 0.4a$	A1	
	1.3 <i>a</i> = 1.86	M1	Solving simultaneously for a
	$a = 1.43 \text{ m s}^{-2}$	A1	
		5	

Question	Answer	Marks	Guidance
7(ii)	$F = 0.8 \times 0.4g \cos 25$	B1	
	$2.5 + 0.4 g \sin 25 - T - F = 0$	M1	For using equilibrium of forces acting on particle <i>B</i> with 4 terms
	$T - 0.9 g \sin \theta = 0$	M1	For using equilibrium of forces acting on particle <i>A</i> with 2 terms
		M1	For solving for θ
	$\theta = 8.2^{\circ}$	A1	
		5	