Question	Answer	Marks	Guidance
1	$[12 \cos 25=3 a]$	M1	For use of Newton's second law
	$a=4 \cos 25=3.625$	$\mathbf{A 1}$	
	$\left[s=1 / 2 \times 4 \cos 25 \times 5^{2}\right]$	$\mathbf{M 1}$	For use of $s=u t+1 / 2 a t^{2} \quad$ OE
	Distance $=45.3 \mathrm{~m}$	$\mathbf{A 1}$	
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2(i)	Power $=1150 \times 12=13800 \mathrm{~W}$	B1	For use of $P=F \times v \quad$ Allow 13.8 kW
		1	
2(ii)	$\text { Driving force }=\frac{25000}{12}$	B1	$\text { Using } F=\frac{P}{v}$
	$\frac{25000}{12}-1150-3700 g \sin 4=3700 a$	M1	For applying Newton's 2nd law up the slope, 4 terms
	$a=-0.445 \mathrm{~m} \mathrm{~s}^{-2}$	A1	
		3	
2(iii)	$\frac{25000}{v}-1150-3700 g \sin 4=0$	M1	For stating the equation for constant v, with 3 terms, and solving for v
	$v=6.70 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	

Question	Answer	Marks	Guidance
3(i)	640×18	M1	For use of work done $=F \times d$
	Work done $=11520 \mathrm{~J}$	A1	
		2	
3(ii)	KE at start $=1 / 2 \times 840 \times 14^{2}=82320 \mathrm{~J}$	B1	
	$\begin{aligned} & \text { PE gained }=840 g \times 8 \sin 30 \\ & -840 g \times 10 \sin 20=4870 \mathrm{~J} \end{aligned}$	B1	
	$1 / 2 \times 840 \times v^{2}=82320-11520-4870$	M1	For using work - energy equation with 4 terms and solving for v
	$v=12.5 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		4	

Question	Answer	Marks	Guidance
4(i)	$\text { Acceleration }=\frac{(-25)}{2.5}=-10 \mathrm{~m} \mathrm{~s}^{-2}$	B1	AG
		1	
4(ii)	$V=-15+7.5 \times 4$	M1	Using $v-t$ graph OE
	$V=15 \mathrm{~m} \mathrm{~s}^{-1}$	A1	
		2	
4(iii)	Using $v=0$ at $t=4.5$ and $t=8$	B1	
		M1	Attempting to use area to find total distance travelled
	$\begin{aligned} & 1 / 2 \times(4.5+2) \times 10 \\ & +1 / 2 \times(8-4.5) \times 15 \\ & +1 / 2 \times(T-8) \times 15=100 \end{aligned}$	M1	For setting up an equation for total distance travelled and solving for T
	$T=13.5$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Acceleration $=0.4 \mathrm{~m} \mathrm{~s}^{-2}$	B1	
		1	
5(ii)	$\frac{100}{t^{2}}-0.1 t=0$	M1	For setting $v=0$ and solving for t
	$t=10 \mathrm{~s}$	A1	
		2	
5(iii)	Distance $t=0$ to $t=5$ is $1 / 2(1.5+3.5) \times 5=12.5$	B1	Trapezium rule or integration
	$s(t)=\int\left(\frac{100}{t^{2}}-0.1 t\right) d t$	M1	For integration
	$=-\frac{100}{t}-0.05 t^{2}(+C)$	A1	Correct integration
	$s(10)-s(5)$	M1	Use limits 5 and 10 used or find $+C$
	Total distance $=12.5+6.25=18.75 \mathrm{~m}$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)		M1	For resolving forces (either direction)
	$\begin{aligned} X & =75+50 \cos 60(=100) \\ Y & =50 \sin 60(=43.3) \end{aligned}$	A1	For both equations, unevaluated
	Resultant $=\sqrt{ }\left(100^{2}+43.3^{2}\right)=109 \mathrm{~N}$	B1	
	Angle $=\arctan \left(\frac{43.3}{100}\right)=23.4{ }^{\circ}$	B1	Must state anticlockwise from the positive x-axis or show in a diagram
		4	
6(ii)	$50 \cos \alpha-F \cos 50=0$	B1	Resolving forces horizontally
	$50 \sin \alpha-3 F-F \sin 50=0$	B1	Resolving forces vertically
	$\tan \alpha=\frac{(3 F+F \sin 50)}{(F \cos 50)}$	M1	For division to find θ or for using Pythagoras to find F
	$\alpha=80.3$	A1	
	$F=13.1$	A1	
		5	

Question	Answer	Marks	Guidance
$7(\mathrm{i})$		M1	For applying Newton's 2nd law to either particle (correct number of terms)
	$T-0.9 g \sin 15=0.9 a$	$\mathbf{A 1}$	
	$2.5+0.4 g \sin 25-T=0.4 a$	$\mathbf{A 1}$	
	$1.3 a=1.86 \ldots$	$\mathbf{M 1}$	Solving simultaneously for a
	$a=1.43 \mathrm{~m} \mathrm{~s}^{-2}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
7 7(ii)	$F=0.8 \times 0.4 g \cos 25$	$\mathbf{B 1}$	
	$2.5+0.4 g \sin 25-T-F=0$	$\mathbf{M 1}$	For using equilibrium of forces acting on particle B with 4 terms
	$T-0.9 g \sin \theta=0$	M1	For using equilibrium of forces acting on particle A with 2 terms
		M1	For solving for θ
	$\theta=8.2^{\circ}$	$\mathbf{A 1}$	
		$\mathbf{5}$	

