Question	Answer	Marks
1	Commence division and reach a partial quotient $x^{2}+k x$	M1
	Obtain quotient $x^{2}-2 x+5$	A1
	Obtain remainder $-12 x+5$	$\mathbf{A 1}$
		$\mathbf{3}$

Question	Answer	Marks
2	Plot the four points and draw straight line	B1
	State or imply that $\ln y=\ln C+x \ln a$	B1
	Carry out a completely correct method for finding $\ln C$ or $\ln a$	M1
	Obtain answer $C=3.7$	A1
	Obtain answer $a=1.5$	A1
		$\mathbf{5}$

Question	Answer	Marks
$3(\mathrm{i})$	Calculate value of a relevant expression or expressions at $x=2$ and $x=3$	M1
	Complete the argument correctly with correct calculated values	A1
		$\mathbf{2}$
	Use an iterative formula correctly at least once	M1
	Show that (B) fails to converge	A1
	Using (A), obtain final answer 2.43	A1
	Show sufficient iterations to justify 2.43 to 2 d.p., or show there is a sign change in $(2.425,2.435)$	A1
		$\mathbf{4}$

Question	Answer	Marks
$4(\mathrm{i})$	Use correct $\tan (A \pm B)$ formula and express the LHS in terms of $\tan x$	M1
	Using $\tan 45^{\circ}=1$ express LHS as a single fraction	A1
	Use Pythagoras or correct double angle formula	M1
	Obtain given answer	A1
		$\mathbf{4}$
4(ii)	Show correct sketch for one branch	B1
	Both branches correct and nothing else seen in the interval	B1
	Show asymptote at $x=45^{\circ}$	B1
		$\mathbf{3}$

Question	Answer	Marks
5(i)	State or imply $y^{3}+3 x y^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $x y^{3}$	B1
	State or imply $4 y^{3} \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of y^{4}	B1
	Equate derivative of the LHS to zero and solve for $\frac{\mathrm{d} y}{\mathrm{~d} x}$	M1
	Obtain the given answer	A1
		4
5(ii)	Equate numerator to zero	*M1
	Obtain $y=-2 x$, or equivalent	A1
	Obtain an equation in x or y	DM1
	Obtain final answer $x=-1, y=2$ and $x=1, y=-2$	A1
		4

Question	Answer	Marks
6	Separate variables correctly and attempt integration of one side	B1
	Obtain term $\tan y$, or equivalent	B1
	Obtain term of the form $k \ln \cos x$, or equivalent	M1
	Obtain term $-4 \ln \cos x$, or equivalent	A1
	Use $x=0$ and $y=\frac{1}{4} \pi$ in solution containing $a \tan y$ and $b \ln \cos x$ to evaluate a constant, or as limits	M1
	Obtain correct solution in any form, e.g. tan $y=4 \ln \sec x+1$	A1
	Substitute $y=\frac{1}{3} \pi$ in solution containing terms $a \tan y$ and $b \ln \cos x$, and use correct method to find x	M1
	Obtain answer $x=0.587$	A1
		$\mathbf{8}$

Question	Answer	Marks
7(a)	Square $x+\mathrm{i} y$ and equate real and imaginary parts to 8 and -15	M1
	Obtain $x^{2}-y^{2}=8$ and $2 x y=-15$	A1
	Eliminate one unknown and find a horizontal equation in the other	M1
	Obtain $4 x^{4}-32 x^{2}-225=0$ or $4 y^{4}+32 y^{2}-225=0$, or three term equivalent	A1
	Obtain answers $\pm \frac{1}{\sqrt{2}}(5-3 i)$ or equivalent	A1
		5
7(b)	Show a circle with centre $2+\mathrm{i}$ in a relatively correct position	B1
	Show a circle with radius 2 and centre not at the origin	B1
	Show line through i at an angle of $\frac{1}{4} \pi$ to the real axis	B1
	Shade the correct region	B1
		4

Question	Answer	Marks
8(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A=2, B=2, C=-1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		4
8(ii)	Integrate and obtain terms $2 x+2 \ln (x+2)-\frac{1}{2} \ln (2 x-1)$ (deduct $\mathbf{B 1}$ for each error or omission) [The FT is on A, B and C]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln (x+2)$ and $b \ln (2 x-1)$, where $a b \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
		5

Question	Answer	Marks
9(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x=2 \pm \sqrt{3}$	A1
		4
9 (ii)	Integrate by parts and reach $k\left(1+x^{2}\right) \mathrm{e}^{-\frac{1}{2} x}+l \int x \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$	*M1
	Obtain $-2\left(1+x^{2}\right) \mathrm{e}^{-\frac{1}{2} x}+4 \int x \mathrm{e}^{-\frac{1}{2} x} \mathrm{~d} x$, or equivalent	A1
	Complete the integration and obtain $\left(-18-8 x-2 x^{2}\right) \mathrm{e}^{-\frac{1}{2} x}$, or equivalent	A1
	Use limits $x=0$ and $x=2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5

Question	Answer	Marks
10(i)	Equate at least two pairs of components of general points on l and m and solve for λ or for μ	M1
	Obtain correct answer for λ or μ, e.g. $\lambda=3$ or $\mu=-2 ; \lambda=0$ or $\mu=-\frac{1}{2}$; or $\lambda=\frac{3}{2} \quad$ or $\mu=-\frac{7}{2}$	A1
	Verify that not all three pairs of equations are satisfied and that the lines fail to intersect	A1
		3
10(ii)	Carry out correct process for evaluating scalar product of direction vectors for l and m	*M1
	Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate the inverse cosine of the result	DM1
	Obtain answer 45° or $\frac{1}{4} \pi(0.785)$ radians	A1
		3
10(iii)	EITHER: Use scalar product to obtain a relevant equation in a, b and c, e.g. $-a+b+4 c=0$	B1
	Obtain a second equation, e.g. $2 a+b-2 c=0$ and solve for one ratio, e.g. $a: b$	M1
	Obtain $a: b: c=2:-2: 1$, or equivalent	A1
	Substitute ($3,-2,-1$) and values of a, b and c in general equation and find d	M1
	Obtain answer $2 x-2 y+z=9$, or equivalent	A1
	OR1: Attempt to calculate vector product of relevant vectors, e.g $(-\mathbf{i}+\mathbf{j}+4 \mathbf{k}) \times(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$	(M1
	Obtain two correct components	A1
	Obtain correct answer, e.g. $-6 \mathbf{i}+6 \mathbf{j}-3 \mathbf{k}$	A1
	Substitute ($3,-2,-1$) in $-6 x+6 y-3 z=d$, or equivalent, and find d	M1
	Obtain answer $-2 x+2 y-z=-9$, or equivalent	A1)
	OR2: Using the relevant point and relevant vectors, form a 2-parameter equation for the plane	(M1
	State a correct equation, e.g. $\mathbf{r}=3 \mathbf{i}-2 \mathbf{j}-\mathbf{k}+\lambda(-\mathbf{i}+\mathbf{j}+4 \mathbf{k})+\mu(2 \mathbf{i}+\mathbf{j}-2 \mathbf{k})$	A1
	State three correct equations in x, y, z, λ and μ	A1
	Eliminate λ and μ	M1

Question	Answer		Marks
	Obtain answer $2 x-2 y+z=9$, or equivalent		A1)
	OR3:	Using the relevant point and relevant vectors, form a determinant equation for the plane	(M1
		State a correct equation, e.g. $\left\|\begin{array}{ccc}x-3 & y+2 & z+1 \\ -1 & 1 & 4 \\ 2 & 1 & -2\end{array}\right\|=0$	A1
		Attempt to expand the determinant	M1
		Obtain two correct cofactors	A1
		Obtain answer $-2 x+2 y-z=-9$, or equivalent	A1)
			5

