Question	Answer	Marks
1	Commence division and reach a partial quotient $x^2 + kx$	M1
	Obtain quotient $x^2 - 2x + 5$	A1
	Obtain remainder $-12x + 5$	A1
		3

Question	Answer	Marks
2	Plot the four points and draw straight line	B1
	State or imply that $\ln y = \ln C + x \ln a$	B1
	Carry out a completely correct method for finding ln C or ln a	M1
	Obtain answer $C = 3.7$	A1
	Obtain answer $a = 1.5$	A1
		5

Question	Answer	Marks
3(i)	Calculate value of a relevant expression or expressions at $x = 2$ and $x = 3$	M1
	Complete the argument correctly with correct calculated values	A1
		2
3(ii)	Use an iterative formula correctly at least once	M1
	Show that (<i>B</i>) fails to converge	A1
	Using (A), obtain final answer 2.43	A1
	Show sufficient iterations to justify 2.43 to 2 d.p., or show there is a sign change in (2.425, 2.435)	A1
		4

Question	Answer	Marks
4(i)	Use correct $tan(A \pm B)$ formula and express the LHS in terms of tan x	M1
	Using tan 45° = 1 express LHS as a single fraction	A1
	Use Pythagoras or correct double angle formula	M1
	Obtain given answer	A1
		4
4(ii)	Show correct sketch for one branch	B1
	Both branches correct and nothing else seen in the interval	B1
	Show asymptote at $x = 45^{\circ}$	B1
		3

Question	Answer	Marks
5(i)	State or imply $y^3 + 3xy^2 \frac{dy}{dx}$ as derivative of xy^3	B1
	State or imply $4y^3 \frac{dy}{dx}$ as derivative of y^4	B1
	Equate derivative of the LHS to zero and solve for $\frac{dy}{dx}$	M1
	Obtain the given answer	A1
		4
5(ii)	Equate numerator to zero	* M 1
	Obtain $y = -2x$, or equivalent	A1
	Obtain an equation in x or y	DM1
	Obtain final answer $x = -1$, $y = 2$ and $x = 1$, $y = -2$	A1
		4

9709/33

Question	Answer	Marks
6	Separate variables correctly and attempt integration of one side	B1
	Obtain term $\tan y$, or equivalent	B1
	Obtain term of the form $k \ln \cos x$, or equivalent	M1
	Obtain term $-4\ln\cos x$, or equivalent	A1
	Use $x = 0$ and $y = \frac{1}{4}\pi$ in solution containing $a \tan y$ and $b \ln \cos x$ to evaluate a constant, or as limits	M1
	Obtain correct solution in any form, e.g. $\tan y = 4 \ln \sec x + 1$	A1
	Substitute $y = \frac{1}{3}\pi$ in solution containing terms $a \tan y$ and $b \ln \cos x$, and use correct method to find x	M1
	Obtain answer $x = 0.587$	A1
		8

Question	Answer	Marks
7(a)	Square $x + iy$ and equate real and imaginary parts to 8 and -15	M1
	Obtain $x^2 - y^2 = 8$ and $2xy = -15$	A1
	Eliminate one unknown and find a horizontal equation in the other	M1
	Obtain $4x^4 - 32x^2 - 225 = 0$ or $4y^4 + 32y^2 - 225 = 0$, or three term equivalent	A1
	Obtain answers $\pm \frac{1}{\sqrt{2}}(5-3i)$ or equivalent	A1
		5
7(b)	Show a circle with centre 2+i in a relatively correct position	B1
	Show a circle with radius 2 and centre not at the origin	B1
	Show line through i at an angle of $\frac{1}{4}\pi$ to the real axis	B1
	Shade the correct region	B1
		4

Question	Answer	Marks
8(i)	Use a relevant method to determine a constant	M1
	Obtain one of the values $A = 2$, $B = 2$, $C = -1$	A1
	Obtain a second value	A1
	Obtain the third value	A1
		4
8(ii)	Integrate and obtain terms $2x + 2\ln(x+2) - \frac{1}{2}\ln(2x-1)$ (deduct B1 for each error or omission) [The FT is on <i>A</i> , <i>B</i> and <i>C</i>]	B2 FT
	Substitute limits correctly in an integral containing terms $a \ln(x+2)$ and $b \ln(2x-1)$, where $ab \neq 0$	*M1
	Use at least one law of logarithms correctly	DM1
	Obtain the given answer after full and correct working	A1
		5

Question	Answer	Marks
9(i)	Use correct product or quotient rule	M1
	Obtain correct derivative in any form	A1
	Equate derivative to zero and obtain a 3 term quadratic equation in x	M1
	Obtain answers $x = 2 \pm \sqrt{3}$	A1
		4
9(ii)	Integrate by parts and reach $k(1+x^2)e^{-\frac{1}{2}x} + l\int xe^{-\frac{1}{2}x} dx$	*M1
	Obtain $-2(1+x^2)e^{-\frac{1}{2}x} + 4\int xe^{-\frac{1}{2}x} dx$, or equivalent	A1
	Complete the integration and obtain $(-18 - 8x - 2x^2)e^{-\frac{1}{2}x}$, or equivalent	A1
	Use limits $x = 0$ and $x = 2$ correctly, having fully integrated twice by parts	DM1
	Obtain the given answer	A1
		5

9709/33

Question	Answer	Marks
10(i)	Equate at least two pairs of components of general points on l and m and solve f or for μ	for λ M1
	Obtain correct answer for λ or μ , e.g. $\lambda = 3$ or $\mu = -2$; $\lambda = 0$ or $\mu = -\frac{1}{2}$; or $\lambda = \frac{3}{2}$ or $\mu = -\frac{7}{2}$	A1
	Verify that not all three pairs of equations are satisfied and that the lines fail to intersect	A1
		3
10(ii)	Carry out correct process for evaluating scalar product of direction vectors for <i>l</i>	and <i>m</i> *M1
	Using the correct process for the moduli, divide the scalar product by the product the moduli and evaluate the inverse cosine of the result	ct of DM1
	Obtain answer 45° or $\frac{1}{4}\pi$ (0.785) radians	A1
		3
10(iii)	<i>EITHER:</i> Use scalar product to obtain a relevant equation in <i>a</i> , <i>b</i> and <i>c</i> , e.g. $-a+b+4c=0$	B
	Obtain a second equation, e.g. $2a + b - 2c = 0$ and solve for one ratio, e.g. $a : b$	M
	Obtain $a: b: c = 2: -2: 1$, or equivalent	A1
	Substitute $(3, -2, -1)$ and values of <i>a</i> , <i>b</i> and <i>c</i> in general equation and	find <i>d</i> M1
	Obtain answer $2x - 2y + z = 9$, or equivalent	A1
	<i>OR</i> 1: Attempt to calculate vector product of relevant vectors, e.g $(-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) \times (2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$	(M1
	Obtain two correct components	Al
	Obtain correct answer, e.g. $-6\mathbf{i} + 6\mathbf{j} - 3\mathbf{k}$	A
	Substitute $(3, -2, -1)$ in $-6x + 6y - 3z = d$, or equivalent, and find d	M
	Obtain answer $-2x + 2y - z = -9$, or equivalent	A1)
	<i>OR2</i> : Using the relevant point and relevant vectors, form a 2-parameter equator for the plane	ation (M1
	State a correct equation, e.g. $\mathbf{r} = 3\mathbf{i} - 2\mathbf{j} - \mathbf{k} + \lambda(-\mathbf{i} + \mathbf{j} + 4\mathbf{k}) + \mu(2\mathbf{i} + \mathbf{j} - \mathbf{k})$	-2k) A1
	State three correct equations in <i>x</i> , <i>y</i> , <i>z</i> , λ and μ	Al
	Eliminate λ and μ	M1

9709/33

Question	Answer	Marks
	Obtain answer $2x - 2y + z = 9$, or equivalent	A1)
	<i>OR</i> 3: Using the relevant point and relevant vectors, form a determinant equation for the plane	on (M1
	State a correct equation, e.g. $\begin{vmatrix} x-3 & y+2 & z+1 \\ -1 & 1 & 4 \\ 2 & 1 & -2 \end{vmatrix} = 0$	A1
	Attempt to expand the determinant	M1
	Obtain two correct cofactors	A1
	Obtain answer $-2x + 2y - z = -9$, or equivalent	A1)
		5