Question	Answer	Marks	Guidance
1	Use subtraction or addition property of logarithms	*M1	
	Obtain $\frac{3 x+1}{x+2}=\mathrm{e}$ or equivalent with no presence of logarithm	A1	
	Use correct process to solve equation	D11	
	Obtain $\frac{2 \mathrm{e}-1}{3-\mathrm{e}}$ or exact equivalent	$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	Use $\cos 2 \theta=2 \cos ^{2} \theta-1$	B1	
	Obtain $10 \cos ^{3} \theta=4$ or equivalent	B1	
	Use correct process to find at least one value of θ from equation of form $k_{1} \cos ^{3} \theta=k_{2}$	$\mathbf{M 1}$	
	Obtain 42.5	A1	
	Obtain 317.5 and no others between 0 and 360	$\mathbf{A 1}$	
		$\mathbf{5}$	

Question	Answer	Marks	Guidance
3	Take logarithms of both sides and apply power law	M1	Condone incorrect inequality signs until final answer. The first 6 marks are for obtaining the correct critical values.
	Obtain $2 x<\frac{\ln 80}{\ln 1.3}$ or equivalent using $\log _{10}$	A1	
	Obtain $x=8.35 \ldots$	A1	
	State or imply non-modulus inequality $(3 x-1)^{2}>(3 x-10)^{2}$ or corresponding equation or linear equation $3 x-1=-(3 x-10)$	B1	
	Attempt solution of inequality or equation (obtaining 3 terms when squaring each bracket or solving linear equation with signs of $3 x$ different)	M1	
	Obtain $x=\frac{11}{6}$ or $x=1.83 \ldots$	A1	
	Conclude $1.83<x<8.35$	A1	
		7	

Question	Answer	Marks	Guidance
4(a)	Obtain integrand of form $a \sec ^{2} \theta+b$	M1	
	Obtain correct $5 \sec ^{2} \theta-1$	A1	
	Integrate to obtain form $a \tan \theta+b \theta$	M1	
	Obtain $5 \tan \theta-\theta+c$	A1	
		4	
4(b)	Obtain integral of form $k \ln (3 x+1)$	*M1	
	Apply limits and obtain $\frac{2}{3} \ln (3 a+1)=\ln 16$	A1	
	Obtain equation with no presence of \ln	DM1	
	Obtain 21	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Substitute $x=-2$ and equate to zero	*M1	
	Substitute $x=\frac{1}{2}$ and equate to 40	*M1	
	Obtain $-8 a+4 b-64=0$ and $\frac{1}{8} a+\frac{1}{4} b=\frac{23}{2}$ or equivalents	A1	
	Solve a pair of simultaneous equations for a or for b	DM1	Needs at least one of the two previous M marks
	Obtain $a=12$ and $b=40$	A1	
		5	
5(ii)	Attempt division by $(x+2)$ or inspection at least as far as $k x^{2}+m x$	M1	
	Obtain $12 x^{2}+16 x+5$	A1	
	Conclude $(x+2)(2 x+1)(6 x+5)$	A1	
		3	

Question	Answer	Marks	Guidance
6(i)	Obtain $\frac{\mathrm{d} x}{\mathrm{~d} t}=4 \mathrm{e}^{2 t}+4 \mathrm{e}^{t}$	$\mathbf{B 1}$	
	Use product rule to find $\frac{\mathrm{d} y}{\mathrm{~d} t}$	M1	
	Obtain $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{5 \mathrm{e}^{2 t}+10 t \mathrm{e}^{2 t}}{4 \mathrm{e}^{2 t}+4 \mathrm{e}^{t}}$ or equivalent	A1	
	Equate first derivative of the form $\frac{a \mathrm{e}^{2 t}+b t \mathrm{e}^{2 t}}{c \mathrm{e}^{2 t}+d \mathrm{e}^{t}}$ to zero and solve to find t	M1	
	Obtain $t=-\frac{1}{2}$ from completely correct work	A1	
	Obtain $(3.16,-0.92)$	$\mathbf{A 1}$	

Question	Answer	Marks	Guidance
6(ii)	Identify $t=0$	B1	
	Substitute $t=0$ in expression for first derivative and find negative reciprocal	M1	
	Obtain $-\frac{8}{5}$ or equivalent	A1	
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
7(i)	Differentiate to obtain form $k_{1} x+k_{2}+k_{3} \sin \frac{1}{2} x$	*M1	
	Obtain correct $2 x+3-\frac{5}{2} \sin \frac{1}{2} x$ and deduce or imply gradient at P is 3	A1	
	Equate first derivative to their -3 and rearrange	DM1	
	Obtain $x=\frac{5}{4} \sin \frac{1}{2} x-3$	A1	
		4	
7(ii)	Consider sign of their $2 x+6-\frac{5}{2} \sin \frac{1}{2} x$ at -4.5 and -4.0 or equivalent	M1	
	Complete argument correctly for correct expression with appropriate calculations	A1	
		2	
7(iii)	Use iteration formula correctly at least once	M1	
	Obtain final answer -4.11	A1	
	Show sufficient iterations to justify accuracy to 3 sf or show sign change in interval $(-4.115,-4.105)$	A1	
		3	

