Question	Answer	Marks	Guidance
1	Introduce logarithms to both sides and use power law	*M1	
	Obtain $(3x-1)\log 5 = 4x\log 2$ or equivalent	A1	Allow A1 for poor use of brackets if recovered later
	Solve linear equation for <i>x</i>	DM1	dep *M
	Obtain 0.783	A1	Allow 3 sf or better
		4	

Question	Answer	Marks	Guidance
2	Solve 3-term quadratic equation or a pair of linear equations	M1	For M1 , must square both sides when attempting a quadratic equation
	Obtain $x = -5$ and $x = 3$	A1	
	Substitute (at least) one value of x (less than 4) into $ x+4 - x-4 $, showing correct evaluation of modulus and producing only one answer in each case	M1	
	Obtain –8 and 6 and no others	A1	
		4	

Question	Answer	Marks	Guidance
3	Differentiate to obtain form $k_1 \sec^2 \frac{1}{2}x + k_2 \cos \frac{1}{2}x$	M1	If a factor of 0.5 is missed, can still get 5/6, penalise at first A1
	Obtain $\frac{1}{2}\sec^2\frac{1}{2}x + \frac{3}{2}\cos\frac{1}{2}x$	A1	
	Equate first derivative to zero and produce $\cos^3 \frac{1}{2}x = k_3$	*M1	
	Use correct process to find one value of x	DM1	Dep on *M, allow for obtaining 1.609, 92.2° or 268°
	Obtain $x = 4.67$	A1	Allow $x = 4.67$ or better for A1
	Obtain $y = 1.12$	A1	Allow $y = 1.12$ from $x = 4.66$ but nothing else
		6	

Question	Answer	Marks	Guidance
4(i)	Substitute $x = -3$ into either $p(x)$ or $q(x)$ and equate to zero (may be implied)	M1	Allow long division, but the remainder needs to be independent of x
	Obtain $a = -11$	A1	
	Obtain $b = -8$	A1	
		3	
4(ii)	Divide $x+3$ into expression for $q(x)-p(x)$ (may be a four term cubic equation), or Obtain a 3 term cubic equation by subtraction	*M1	Allow *M1 for their $x^3 + 3x + 36$, but must have integer values for <i>a</i> and <i>b</i>
	Obtain $x^2 - 3x + 12$ or $x^2 - 2x - 5$ and $2x^2 - 5x + 7$	A1	
	Apply discriminant to quadratic factor of $q(x) - p(x)$ or equivalent	DM1	dep on *M
	Obtain -39 or equivalent and conclude appropriately	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	Obtain derivative of the form ke^{-2x}	*M1	Condone $k = 4$ for M1
	State or imply gradient of curve at P is -8	A1	
	Form equation of straight line through (0,9) with negative gradient	*DM1	dep on *M
	Obtain $y = -8x + 9$ or equivalent	A1	
	Equate equation of curve and equation of straight line	DM1	dep on both *M
	Rearrange to confirm $x = \frac{9}{8} - \frac{1}{2}e^{-2x}$	A1	
		6	

Question	Answer	Marks	Guidance
5(ii)	Use iterative process correctly at least once	M1	
	Obtain final answer 1.07	A1	
	Show sufficient iterations to 5 sf to justify answer or show sign change in interval (1.065, 1.075)	A1	
		6	

Question	Answer	Marks	Guidance
6(a)	Obtain $2-2\cos 2x$ as part of integrand	B1	
	Obtain $3\sin 2x$ as part of integrand	B1	Allow second B1 for writing
	Integrate to obtain form $k_1x + k_2 \sin 2x + k_3 \cos 2x$	M1	$\int 6\sin x \cos x dx = 6 \left(\frac{1}{2}\sin^2 x\right) , \mathbf{M1}$ may then be implied by subsequent work
	Obtain $2x - \sin 2x - \frac{3}{2}\cos 2x$ or $2x - \sin 2x + 3\sin^2 x$	A1	
	Apply limits to obtain $\frac{1}{2}\pi + \frac{1}{2}$	A1	
		5	
6(b)	Integrate to obtain $2\ln(3x+2)$	B1	Allow $\frac{6}{3}\ln(3x+2)$ for B1
	Use at least one relevant logarithm property	*M1	
	Obtain $\frac{3a+2}{2} = 7$ or $\frac{(3a+2)^2}{4} = 49$ or equivalent without ln	A1	
	Solve relevant equation to find <i>a</i>	DM1	Dep on * M1 , allow for $49 = (3a+2)^2$ OE or correct working involving $(3a+2)$
	Obtain $a = 4$ only	A1	
		5	

9709/22

Question	Answer	Marks	Guidance
7(i)	Obtain $4y + 4x \frac{dy}{dx}$ as derivative of $4xy$	B 1	
	Obtain $4y \frac{dy}{dx}$ as derivative of $2y^2$	B 1	
	State $2x + 4y + 4x \frac{dy}{dx} + 4y \frac{dy}{dx} = 0$	B1	3rd B1 may be implied by later work
	Substitute $x = -1$, $y = 3$ to find gradient of line	*M1	dep at least one B1
	Form equation of tangent through $(-1, 3)$ with numerical gradient	DM1	dep *M
	Obtain $5x + 4y - 7 = 0$ or equivalent of required form	A1	Allow any 3 term integer form for A1
		6	
7(ii)	Substitute $\frac{dy}{dx} = \frac{1}{2}$ to find relation between x and y	*M1	dep at least one B1 in part (i), must be linear
	Obtain $4x + 6y = 0$ or equivalent	A1	
	Substitute for <i>x</i> or <i>y</i> in equation of curve	DM1	dep on *M
	Obtain $-\frac{7}{4}y^2 = 7$ or $-\frac{7}{9}x^2 = 7$ or equivalent and conclude appropriately	A1	
		4	