| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 1 | Introduce logarithms to both sides and use <br> power law | $*$ M1 |  |
|  | Obtain $(3 x-1) \log 5=4 x \log 2$ or equivalent | A1 | Allow A1 for poor use of brackets <br> if recovered later |
|  | Solve linear equation for $x$ | DM1 | dep *M |
|  | Obtain 0.783 | $\mathbf{A 1}$ | Allow 3 sf or better |
|  |  | $\mathbf{4}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| 2 | Solve 3-term quadratic equation or a pair of <br> linear equations | M1 | For M1, must square both sides <br> when attempting a quadratic <br> equation |
|  | Obtain $x=-5$ and $x=3$ | A1 |  |
|  | Substitute (at least) one value of $x$ (less than 4) <br> into $\|x+4\|-\|x-4\|$, showing correct evaluation <br> of modulus and producing only one answer in <br> each case | M1 |  |
|  | Obtain -8 and 6 and no others | A1 |  |
|  |  | $\mathbf{4}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 3 | Differentiate to obtain form $k_{1} \sec ^{2} \frac{1}{2} x+k_{2} \cos \frac{1}{2} x$ | M1 | If a factor of 0.5 is missed, can still get $5 / 6$, penalise at first A1 |
|  | Obtain $\frac{1}{2} \sec ^{2} \frac{1}{2} x+\frac{3}{2} \cos \frac{1}{2} x$ | A1 |  |
|  | Equate first derivative to zero and produce $\cos ^{3} \frac{1}{2} x=k_{3}$ | *M1 |  |
|  | Use correct process to find one value of $x$ | DM1 | Dep on *M, allow for obtaining <br> 1.609....., $92.2^{\circ}$ or $268^{\circ}$ |
|  | Obtain $x=4.67$ | A1 | Allow $x=4.67$ or better for A1 |
|  | Obtain $y=1.12$ | A1 | Allow $y=1.12$ from $x=4.66$ but nothing else |
|  |  | 6 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 4(i) | Substitute $x=-3$ into either $\mathrm{p}(x)$ or $\mathrm{q}(x)$ and equate to zero ( may be implied) | M1 | Allow long division, but the remainder needs to be independent of $x$ |
|  | Obtain $a=-11$ | A1 |  |
|  | Obtain $b=-8$ | A1 |  |
|  |  | 3 |  |
| 4(ii) | Divide $x+3$ into expression for $\mathrm{q}(x)-\mathrm{p}(x)$ ( may be a four term cubic equation), or Obtain a 3 term cubic equation by subtraction | *M1 | Allow *M1 for their $x^{3}+3 x+36$, but must have integer values for $a$ and $b$ |
|  | Obtain $x^{2}-3 x+12$ or $x^{2}-2 x-5$ and $2 x^{2}-5 x+7$ | A1 |  |
|  | Apply discriminant to quadratic factor of $\mathrm{q}(x)-\mathrm{p}(x)$ or equivalent | DM1 | dep on *M |
|  | Obtain -39 or equivalent and conclude appropriately | A1 |  |
|  |  | 4 |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | :--- |
| $5(\mathrm{i})$ | Obtain derivative of the form $k \mathrm{e}^{-2 x}$ | $* \mathbf{M 1}$ | Condone $k=4$ for M1 |
|  | State or imply gradient of curve at $P$ is -8 | A1 |  |
|  | Form equation of straight line through $(0,9)$ <br> with negative gradient | *DM1 | dep on $* \mathrm{M}$ |
|  | Obtain $y=-8 x+9$ or equivalent | A1 |  |
|  | Equate equation of curve and equation of <br> straight line | DM1 | dep on both *M |
|  | Rearrange to confirm $x=\frac{9}{8}-\frac{1}{2} \mathrm{e}^{-2 x}$ | A1 |  |
|  |  | $\mathbf{6}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :--- | ---: | ---: |
| 5 (ii) | Use iterative process correctly at least once | M1 |  |
|  | Obtain final answer 1.07 | A1 |  |
|  | Show sufficient iterations to 5 sf to justify <br> answer or show sign change in interval <br> $(1.065,1.075)$ | A1 |  |
|  |  | $\mathbf{6}$ |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 6(a) | Obtain $2-2 \cos 2 x$ as part of integrand | B1 |  |
|  | Obtain $3 \sin 2 x$ as part of integrand | B1 | Allow second B1 for writing |
|  | Integrate to obtain form $k_{1} x+k_{2} \sin 2 x+k_{3} \cos 2 x$ | M1 | $\int 6 \sin x \cos x \mathrm{~d} x=6\left(\frac{1}{2} \sin ^{2} x\right), \mathbf{M} 1$ <br> may then be implied by subsequent work |
|  | Obtain $2 x-\sin 2 x-\frac{3}{2} \cos 2 x$ or $2 x-\sin 2 x+3 \sin ^{2} x$ | A1 |  |
|  | Apply limits to obtain $\frac{1}{2} \pi+\frac{1}{2}$ | A1 |  |
|  |  | 5 |  |
| 6(b) | Integrate to obtain $2 \ln (3 x+2)$ | B1 | Allow $\frac{6}{3} \ln (3 x+2)$ for $\mathbf{B} 1$ |
|  | Use at least one relevant logarithm property | *M1 |  |
|  | Obtain $\frac{3 a+2}{2}=7$ or $\frac{(3 a+2)^{2}}{4}=49$ or equivalent without $\ln$ | A1 |  |
|  | Solve relevant equation to find $a$ | DM1 | Dep on *M1, allow for $49=(3 a+2)^{2}$ OE or correct working involving $(3 a+2)$ |
|  | Obtain $a=4$ only | A1 |  |
|  |  | 5 |  |


| Question | Answer | Marks | Guidance |
| :---: | :---: | :---: | :---: |
| 7(i) | Obtain $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $4 x y$ | B1 |  |
|  | Obtain $4 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ as derivative of $2 y^{2}$ | B1 |  |
|  | State $2 x+4 y+4 x \frac{d y}{d x}+4 y \frac{d y}{d x}=0$ | B1 | 3rd B1 may be implied by later work |
|  | Substitute $x=-1, y=3$ to find gradient of line | *M1 | dep at least one B1 |
|  | Form equation of tangent through $(-1,3)$ with numerical gradient | DM1 | dep *M |
|  | Obtain $5 x+4 y-7=0$ or equivalent of required form | A1 | Allow any 3 term integer form for A1 |
|  |  | 6 |  |
| 7(ii) | Substitute $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2}$ to find relation between $x$ and y | *M1 | dep at least one $\mathbf{B 1}$ in part (i), must be linear |
|  | Obtain $4 x+6 y=0$ or equivalent | A1 |  |
|  | Substitute for $x$ or $y$ in equation of curve | DM1 | dep on *M |
|  | Obtain $-\frac{7}{4} y^{2}=7$ or $-\frac{7}{9} x^{2}=7$ or equivalent and conclude appropriately | A1 |  |
|  |  | 4 |  |

