Question	Answer	Marks	Guidance
1	$\frac{1}{2}n\left[-24+(n-1)6\right] \sim 3000$ Note: ~ denotes <u>any</u> inequality or equality	M1	Use correct formula with RHS \approx 3000 (e.g. 3010).
	$(3)(n^2-5n-1000)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
	$n \sim 34.2 (\& -29.2)$	A1	
	35. Allow $n \ge 35$	A1	
		4	
2	$ax + 3a = -\frac{2}{x} \rightarrow ax^{2} + 3ax + 2 (= 0)$	*M1	Rearrange into a 3-term quadratic.
	Apply $b^2 - 4ac > 0$ SOI	DM1	Allow \geq . If no inequalities seen, M1 is implied by 2 correct final answers in <i>a</i> or <i>x</i> .
	$a < 0, a > \frac{8}{9}$ (or 0.889) OE	A1 A1	For final answers accept $0 > a > \frac{8}{9}$ but not \leq, \geq .
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	$6C3\left(\frac{2}{x}\right)^3 (-3x)^3$ SOI also allowed if seen in an expansion	M1	Both <i>x</i> 's can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
3(ii)	$6C2\left(\frac{2}{x}\right)^4 \left[(-)3x\right]^2$ SOI clearly identified as critical term	M1	Both <i>x</i> 's and minus sign can be missing.
	$15a \times 16 \times 9 - their 4320 (= 0)$	A1 FT	FT on <i>their</i> 4320.
	<i>a</i> = 2	A1	
		3	

Question	Answer	Marks	Guidance
4	$f'(x) = \left[\left(\frac{3}{2} \right) (2x-1)^{1/2} \right] \times [2] - [6]$	B2, 1, 0	Deduct 1 mark for each [] incorrect.
	$f'(x) < 0 \text{ or } \leq 0 \text{ or } = 0 \text{ SOI}$	M1	
	$(2x-1)^{1/2} < 2 \text{ or } \leq 2 \text{ or } = 2 \text{ OE}$	A1	Allow with <i>k</i> used instead of <i>x</i>
	Largest value of k is $\frac{5}{2}$	A1	Allow $k \leq \frac{5}{2}$ or $k = \frac{5}{2}$ Answer must be in terms of k (not x)
		5	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
5(i)	$\cos\theta + 4 + 5\sin^2\theta + 5\sin\theta - 5\sin\theta - 5(=0)$	M1	Multiply throughout by $\sin\theta + 1$. Accept if $5\sin\theta - 5\sin\theta$ is not seen
	$5(1-\cos^2\theta)+\cos\theta-1 \ (=0)$	M1	Use $s^2 = 1 - c^2$
	$5\cos^2\theta - \cos\theta - 4 = 0 AG$	A1	Rearrange to AG
		3	
5(ii)	$\cos\theta = 1$ and -0.8	B1	Both required
	$\theta = [0^\circ, 360^\circ], [143.1^\circ], [216.9^\circ]$	B1 B1 B1 FT	Both solutions required for 1st mark. For 3rd mark FT for $(360^\circ - their 143.1^\circ)$ Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

Question	Answer	Marks	Guidance
6(i)	$y = \frac{2}{x^2 - 1} \implies x^2 = \frac{2}{y} + 1$ OE	M1	
	$x = (\pm)\sqrt{\frac{2}{y} + 1}$ OE	A1	With or without x/y interchanged.
	$f^{-1}(x) = -\sqrt{\frac{2}{x} + 1} OE$	A1	Minus sign obligatory. Must be a function of <i>x</i> .
		3	

9709/13

Question	Answer	Marks	Guidance
6(ii)	$\left(\frac{2}{x^2 - 1}\right)^2 + 1 = 5$	B1	
	$\frac{2}{x^2 - 1} = (\pm)2 \text{OE} \qquad \text{OR} \qquad x^4 - 2x^2 = 0 \text{OE}$ $x^2 - 1 = (\pm)1 \implies x^2 = 2 \text{ (or 0)}$ $x = -\sqrt{2} \text{or} -1.41 \text{ only}$	B1	Condone $x^2 = 0$ as an additional solution
		4	

Question	Answer	Marks	Guidance
7(i)	$\sin^{-1}\left(\frac{3}{5}\right) = 0.6435$ AG	M1	OR $(PBC =)\cos^{-1}\left(\frac{3}{5}\right) = 0.9273 \Rightarrow (ABP =)\frac{\pi}{2} - 0.9273 = 0.6435$ Or other valid method. Check working and diagram for evidence of incorrect method
7(ii)	Use (once) of sector area = $\frac{1}{2}r^2\theta$	M1	
	Area sector $BAP = \frac{1}{2} \times 5^2 \times 0.6435 = 8.04$	A1	
	Area sector $DAQ = \frac{1}{2} \times \frac{1}{2} \pi \times 3^2 = 7.07$, Allow $\frac{9\pi}{4}$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	<i>EITHER:</i> Region = sect + sect - (rect - Δ) or sect - [rect - (sect + Δ)]	(M1	Use of correct strategy
	$(\text{Area } \Delta BPC =) \frac{1}{2} \times 3 \times 4 = 6$ Seen	A1	
	8.04 + 7.07 - (15 - 6) = 6.11	A1)	
	OR1: Region = sector ADQ – (trap $ABPD$ – sector ABP).	(M1	<u>Use</u> of correct strategy
	(Area trap <i>ABPD</i> =) $\frac{1}{2}(5+1) \times 3 = 9$ Seen	A1	
	7.07 - (9 - 8.04) = 7.07 - 0.96 = 6.11	A1)	
	<i>OR2:</i> Area segment AP = 2.5686 Area segment AQ = 0.5438 Region = segment AP + segment AQ + ΔAPQ .	(M1	<u>Use</u> of correct strategy
	(Area $\Delta APQ =$) $\frac{1}{2} \times 2 \times 3 = 3$ Seen	A1	
	2.57 + 0.54 + 3 = 6.11	A1)	
		3	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
8(i)	<i>EITHER:</i> $4 - 3\sqrt{x} = 3 - 2x \rightarrow 2x - 3\sqrt{x} + 1 (=0)$ or e.g. $2k^2 - 3k + 1 (=0)$	(M1	Form 3-term quad & attempt to solve for \sqrt{x} .
	$\sqrt{x} = \frac{1}{2}, 1$	A1	Or $k = \frac{1}{2}$ or 1 (where $k = \sqrt{x}$).
	$x = \frac{1}{4}, 1$	A1)	
	$OR1: (3\sqrt{x})^2 = (1+2x)^2$	(M1	
	$4x^2 - 5x + 1 \ (=0)$	A1	
	$x = \frac{1}{4}, 1$	A1)	
	$OR2: \frac{3-y}{2} = \left(\frac{4-y}{3}\right)^2 (\rightarrow 2y^2 - 7y + 5(=0))$	(M1	Eliminate <i>x</i>
	$y = \frac{5}{2}, 1$	A1	
	$x = \frac{1}{4}, 1$	A1)	
		3	

Question	Answer	Marks	Guidance
8(ii)	<i>EITHER:</i> Area under line = $\int (3-2x) dx = 3x - x^2$	(B1	
	$=\left[\left(3-1\right)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integn.
	Area under curve $= \int (4 - 3x^{1/2}) dx = 4x - 2x^{3/2}$	B1	
	$\left[\left(4-2 \right) - \left(1 - \frac{1}{4} \right) \right]$	M1	Apply <i>their</i> limits (e.g. $\frac{1}{4} \rightarrow 1$) after integration.
	Required area = $\frac{21}{16} - \frac{5}{4} = \frac{1}{16}$ (or 0.0625)	A1)	
	<i>OR:</i> +/- $\int (3-2x) - (4-3x^{\frac{1}{2}}) = +/-\int (-1-2x+3x^{\frac{1}{2}})$	(*M1	Subtract functions and then attempt integration
	$+/-\left[-x-x^{2}+\frac{3x^{3/2}}{3/2}\right]$	A2, 1, 0 FT	FT on <i>their</i> subtraction. Deduct 1 mark for each term incorrect
	+/- $\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}$ (or 0.0625)	DM1 A1)	Apply <i>their</i> limits $\frac{1}{4} \rightarrow 1$
		5	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
9(i)	$\overrightarrow{AB} = + / - \begin{pmatrix} -18\\9\\-18 \end{pmatrix}, \overrightarrow{BC} = + / - \begin{pmatrix} 12\\-6\\12 \end{pmatrix},$	B1 B1	Allow i , j , k form throughout.
	$\left \overrightarrow{AB} \right = 27, \qquad \left \overrightarrow{BC} \right = 18$	B1 FT B1 FT	FT on their \overline{AB} , their \overline{OD} .
	$\left \overline{CD}\right = \left(\frac{18}{27}\right) \times 18 \text{OR} \left(\frac{18}{27}\right)^2 \times 27 = 12$	B1	
		5	
9(ii)	$\overrightarrow{CD} = (\pm) their \frac{18}{27} \times their \overrightarrow{BC}$ SOI	M1	Expect $(\pm) \begin{pmatrix} 8 \\ -4 \\ 8 \end{pmatrix}$.
	$\overrightarrow{OD} = \begin{pmatrix} 2 \\ -3 \\ -1 \end{pmatrix} (\pm) their \frac{18}{27} \begin{pmatrix} 12 \\ -6 \\ 12 \end{pmatrix} = \begin{pmatrix} 10 \\ -7 \\ 7 \end{pmatrix}, \begin{pmatrix} -6 \\ 1 \\ -9 \end{pmatrix}$	M1 A1 A1	Other methods possible for \overrightarrow{OD} , e.g. $\overrightarrow{OB} + \frac{5}{2} \overrightarrow{CD}$, $\overrightarrow{OB} + \frac{1}{2} \overrightarrow{CD}$ (One soln M2A1, 2nd soln A1) OR $\overrightarrow{OB} + \frac{5}{3} \overrightarrow{BC}$, $\overrightarrow{OB} + \frac{1}{3} \overrightarrow{BC}$ (One soln M2A1, 2nd soln A1)
		4	

9709/13

			2017
Question	Answer	Marks	Guidance
10(i)	$ax^{2} + bx = 0 \rightarrow x(ax+b) = 0 \rightarrow x = \frac{-b}{a}$	B1	
	Find $f''(x)$ and attempt sub <i>their</i> $\frac{-b}{a}$ into <i>their</i> $f''(x)$	M1	
	When $x = \frac{-b}{a}$, $f''(x) = 2a\left(\frac{-b}{a}\right) + b = -b$ MAX	A1	
		3	
10(ii)	Sub $f'(-2) = 0$	M1	
	Sub $f'(1) = 9$	M1	
	a=3 $b=6$	*A1	Solve simultaneously to give both results.
	$f'(x) = 3x^2 + 6x \rightarrow f(x) = x^3 + 3x^2 (+c)$	*M1	Sub <i>their a, b</i> into f'(x) and integrate 'correctly'. Allow $\frac{ax^3}{3} + \frac{bx^2}{2}(+c)$
	-3 = -8 + 12 + c	DM1	Sub $x = -2$, $y = -3$. Dependent on <i>c</i> present. Dependent also on <i>a</i> , <i>b</i> substituted.
	$f(x) = x^3 + 3x^2 - 7$	A1	
		6	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

	-	-	
Question	Answer	Marks	Guidance
11(i)	Gradient of $AB = \frac{1}{2}$	B1	
	Equation of <i>AB</i> is $y = \frac{1}{2}x - \frac{1}{2}$	B1	
		2	
11(ii)	$\frac{dy}{dx} = \frac{1}{2} (x-1)^{-\frac{1}{2}}$	B1	
	$\frac{1}{2}(x-1)^{-\frac{1}{2}} = \frac{1}{2}$. Equate <i>their</i> $\frac{dy}{dx}$ to <i>their</i> $\frac{1}{2}$	*M1	
	x = 2, y = 1	A1	
	$y - 1 = \frac{1}{2}(x - 2)$ (thro' <i>their</i> (2,1) & <i>their</i> $\frac{1}{2}$) $\rightarrow y = \frac{1}{2}x$	DM1 A1	
		5	

Question	Answer	Marks	Guidance
11(iii)	EITHER:	(M1	Where θ is angle between <i>AB</i> and the <i>x</i> -axis
	$\sin\theta = \frac{d}{1} \rightarrow d = \sin\theta$		
	gradient of $AB = \frac{1}{2} \Longrightarrow \tan \theta = \frac{1}{2} \Longrightarrow \theta = 26.5(7)^{\circ}$	B1	
	$d = \sin 26.5(7)^\circ = 0.45 (\text{or } \frac{1}{\sqrt{5}})$	A1)	
	<i>OR1:</i> Perpendicular through <i>O</i> has equation $y = -2x$	(M1	
	Intersection with AB: $-2x = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } \frac{1}{\sqrt{5}}\text{)}$	A1)	
	<i>OR2:</i> Perpendicular through (2, 1) has equation $y = -2x + 5$	(M1	
	Intersection with AB : $-2x + 5 = \frac{1}{2}x - \frac{1}{2} \rightarrow \left(\frac{11}{5}, \frac{3}{5}\right)$	A1	
	$d = \sqrt{\left(\frac{1}{5}\right)^2 + \left(\frac{2}{5}\right)^2} = 0.45 \text{ (or } 1/\sqrt{5})$	A1)	

Question	Answer	Marks	Guidance
11(iii)	<i>OR3:</i> $\triangle OAC$ has area $\frac{1}{4}$ [where $C = (0, -\frac{1}{2})$]	(B1	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d = \frac{1}{4} \longrightarrow d = \frac{1}{\sqrt{5}}$	M1 A1)	
		3	