Question	Answer	Marks	Guidance
1	$1 / 2 n[-24+(n-1) 6] \sim 3000$ Note: \sim denotes any inequality or equality	M1	Use correct formula with RHS ≈ 3000 (e.g. 3010).
	$(3)\left(n^{2}-5 n-1000\right)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
	$n \sim 34.2(\&-29.2)$	A1	
	35. Allow $n \geqslant 35$	A1	
		4	
2	$a x+3 a=-\frac{2}{x} \rightarrow a x^{2}+3 a x+2(=0)$	*M1	Rearrange into a 3-term quadratic.
	Apply $b^{2}-4 a c>0$ SOI	DM1	Allow \geqslant. If no inequalities seen, M1 is implied by 2 correct final answers in a or x.
	$a<0, a>\frac{8}{9} \text { (or } 0.889 \text {) } \mathrm{OE}$	A1 A1	For final answers accept $0>a>\frac{8}{9}$ but not \leqslant, \geqslant.
		4	

Question	Answer	Marks	Guidance
3(i)	$6 \mathrm{C} 3\left(\frac{2}{x}\right)^{3}(-3 x)^{3}$ SOI also allowed if seen in an expansion	M1	Both x^{\prime} s can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
3(ii)	6C2 $\left(\frac{2}{x}\right)^{4}[(-) 3 x]^{2} \quad$ SOI clearly identified as critical term	M1	Both x 's and minus sign can be missing.
	$15 a \times 16 \times 9-$ their $4320(=0)$	A1 FT	FT on their 4320.
	$a=2$	A1	
		3	

Question	Answer	Marks	Guidance
4	$\mathrm{f}^{\prime}(x)=\left[\left(\frac{3}{2}\right)(2 x-1)^{1 / 2}\right] \times[2]-[6]$	B2, 1, 0	Deduct 1 mark for each [...] incorrect.
	$\mathrm{f}^{\prime}(x)<0$ or $\leqslant 0$ or $=0 \quad$ SOI	M1	
	$(2 x-1)^{1 / 2}<2$ or $\leqslant 2$ or $=2$ OE	A1	Allow with k used instead of x
	Largest value of k is $\frac{5}{2}$	A1	Allow $k \leqslant \frac{5}{2}$ or $k=\frac{5}{2} \quad$ Answer must be in terms of $k(\operatorname{not} x)$
		5	

Question	Answer	Marks	Guidance
5(i)	$\cos \theta+4+5 \sin ^{2} \theta+5 \sin \theta-5 \sin \theta-5(=0)$	M1	Multiply throughout by $\sin \theta+1$. Accept if $5 \sin \theta-5 \sin \theta$ is not seen
	$5\left(1-\cos ^{2} \theta\right)+\cos \theta-1(=0)$	M1	Use $s^{2}=1-c^{2}$
	$5 \cos ^{2} \theta-\cos \theta-4=0 \quad \mathrm{AG}$	A1	Rearrange to AG
		3	
5(ii)	$\cos \theta=1$ and -0.8	B1	Both required
	$\theta=\left[0^{\circ}, 360^{\circ}\right], \quad\left[143.1^{\circ}\right], \quad\left[216.9^{\circ}\right]$	B1 B1 B1 FT	Both solutions required for 1st mark. For 3rd mark FT for (360° - their 143.1°) Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

Question	Answer	Marks	Guidance
6 (i)	$y=\frac{2}{x^{2}-1} \Rightarrow x^{2}=\frac{2}{y}+1$ OE	M1	
	$x=(\pm) \sqrt{\frac{2}{y}+1}$ OE	A1	With or without x / y interchanged.
	$\mathrm{f}^{-1}(x)=-\sqrt{\frac{2}{x}+1}$ OE	A1	Minus sign obligatory. Must be a function of x.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	$\left(\frac{2}{x^{2}-1}\right)^{2}+1=5$	B1	
	$\begin{aligned} & \frac{2}{x^{2}-1}=(\pm) 2 \quad \text { OE } \quad \text { OR } \quad x^{4}-2 x^{2}=0 \quad \text { OE } \\ & x^{2}-1=(\pm) 1 \Rightarrow x^{2}=2(\text { or } 0) \\ & x=-\sqrt{2} \quad \text { or } \quad-1.41 \text { only } \end{aligned}$	B1	Condone $x^{2}=0$ as an additional solution
		4	

Question	Answer	Marks	Guidance
7(i)	$\sin ^{-1}\left(\frac{3}{5}\right)=0.6435 \quad \quad \mathrm{AG}$	M1	$\text { OR }(P B C=) \cos ^{-1}\left(\frac{3}{5}\right)=0.9273 \Rightarrow(A B P=) \frac{\pi}{2}-0.9273=0.6435$ Or other valid method. Check working and diagram for evidence of incorrect method
7(ii)	Use (once) of sector area $=1 / 2 r^{2} \theta$	M1	
	Area sector $B A P=1 / 2 \times 5^{2} \times 0.6435=8.04$	A1	
	Area sector $D A Q=1 / 2 \times 1 / 2 \pi \times 3^{2}=7.07$, Allow $\frac{9 \pi}{4}$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	EITHER: Region $=$ sect + sect $-($ rect $-\Delta)$ or sect $-[$ rect $-(\operatorname{sect}+\Delta)]$	(M1	Use of correct strategy
	$($ Area $\triangle B P C=) 1 / 2 \times 3 \times 4=6 \quad$ Seen	A1	
	$8.04+7.07-(15-6)=6.11$	A1)	
	$\begin{aligned} & \text { OR1: } \\ & \text { Region }=\text { sector } A D Q-(\operatorname{trap} A B P D-\text { sector } A B P) . \end{aligned}$	(M1	Use of correct strategy
	$(\text { Area trap } A B P D=)^{1 / 2}(5+1) \times 3=9$ Seen	A1	
	$7.07-(9-8.04)=7.07-0.96=6.11$	A1)	
	OR2: Area segment $A P=2.5686 \quad$ Area segment $A Q=0.5438$ Region $=$ segment $A P+\operatorname{segment} A Q+\triangle A P Q$.	(M1	Use of correct strategy
	(Area $\triangle A P Q=$) $1 / 2 \times 2 \times 3=3$ Seen	A1	
	$2.57+0.54+3=6.11$	A1)	
		3	

Question	Answer	Marks	Guidance
8(i)	EITHER: $4-3 \sqrt{ } x=3-2 x \rightarrow 2 x-3 \sqrt{ } x+1(=0) \text { or e.g. } 2 k^{2}-3 k+1(=0)$	(M1	Form 3-term quad \& attempt to solve for $\sqrt{ }$.
	$\sqrt{x}=1 / 2,1$	A1	Or $k=1 / 2$ or $1($ where $k=\sqrt{ } x)$.
	$x=1 / 4,1$	A1)	
	OR1: $\left(3 \sqrt{x}^{2}=(1+2 x)^{2}\right.$	(M1	
	$4 x^{2}-5 x+1(=0)$	A1	
	$x=1 / 4,1$	A1)	
	OR2: $\frac{3-y}{2}=\left(\frac{4-y}{3}\right)^{2}\left(\rightarrow 2 y^{2}-7 y+5(=0)\right)$	(M1	Eliminate x
	$y=\frac{5}{2}, 1$	A1	
	$x=1 / 4,1$	A1)	
		3	

Question	Answer	Marks	Guidance
8(ii)	EITHER: Area under line $=\int(3-2 x) \mathrm{d} x=3 x-x^{2}$	(B1	
	$=\left[(3-1)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply their limits (e.g. $1 / 4 \rightarrow 1$) after integn.
	Area under curve $=\int\left(4-3 x^{1 / 2}\right) \mathrm{d} x=4 x-2 x^{3 / 2}$	B1	
	$[(4-2)-(1-1 / 4)]$	M1	Apply their limits (e.g. $1 / 4 \rightarrow 1$) after integration.
	$\text { Required area }=\frac{21}{16}-\frac{5}{4}=\frac{1}{16}(\text { or } 0.0625)$	A1)	
	OR: $+/-\int(3-2 x)-\left(4-3 x^{\frac{1}{2}}\right)=+/-\int\left(-1-2 x+3 x^{\frac{1}{2}}\right)$	(*M1	Subtract functions and then attempt integration
	$+/-\left[-x-x^{2}+\frac{3 x^{3 / 2}}{3 / 2}\right]$	A2, 1, 0 FT	FT on their subtraction. Deduct 1 mark for each term incorrect
	$+/-\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}($ or 0.0625$)$	DM1 A1)	Apply their limits $1 / 4 \rightarrow 1$
		5	

Question	Answer	Marks	Guidance
9(i)	$\overrightarrow{A B}=+/-\left(\begin{array}{c}-18 \\ 9 \\ -18\end{array}\right), \quad \overrightarrow{B C}=+/-\left(\begin{array}{c}12 \\ -6 \\ 12\end{array}\right)$,	B1 B1	Allow $\mathbf{i}, \mathbf{j}, \mathbf{k}$ form throughout.
	$\|\overrightarrow{A B}\|=27, \quad\|\overrightarrow{B C}\|=18$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \end{aligned}$	FT on their $\overrightarrow{A B}$, their $\overrightarrow{O D}$.
	$\|\overrightarrow{C D}\|=\left(\frac{18}{27}\right) \times 18 \quad$ OR $\quad\left(\frac{18}{27}\right)^{2} \times 27=12$	B1	
		5	
9(ii)	$\overrightarrow{C D}=(\pm)$ their $\frac{18}{27} \times$ their $\overrightarrow{B C} \quad$ SOI	M1	Expect $(\pm)\left(\begin{array}{c}8 \\ -4 \\ 8\end{array}\right)$.
	$\overrightarrow{O D}=\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)(\pm)$ their $\frac{18}{27}\left(\begin{array}{c}12 \\ -6 \\ 12\end{array}\right)=\left(\begin{array}{c}10 \\ -7 \\ 7\end{array}\right),\left(\begin{array}{c}-6 \\ 1 \\ -9\end{array}\right)$	M1 A1 A1	Other methods possible for $\overrightarrow{O D}$, e.g. $\overrightarrow{O B}+\frac{5}{2} \overrightarrow{C D}, \overrightarrow{O B}+\frac{1}{2} \overrightarrow{C D}$ (One soln M2A1, 2nd soln A1) OR $\overrightarrow{O B}+\frac{5}{3} \overrightarrow{B C}, \overrightarrow{O B}+\frac{1}{3} \overrightarrow{B C}$ (One soln M2A1, 2nd soln A1)
		4	

Question	Answer	Marks	Guidance
10(i)	$a x^{2}+b x=0 \rightarrow x(a x+b)=0 \rightarrow x=\frac{-b}{a}$	B1	
	Find $\mathrm{f}^{\prime \prime}(x)$ and attempt sub their $\frac{-b}{a}$ into their $\mathrm{f}^{\prime \prime}(x)$	M1	
	When $x=\frac{-b}{a}, \mathrm{f} \prime \prime(x)=2 a\left(\frac{-b}{a}\right)+b=-b \quad$ MAX	A1	
		3	
10(ii)	Sub $\mathrm{f}^{\prime}(-2)=0$	M1	
	Sub $\mathrm{f}^{\prime}(1)=9$	M1	
	$a=3 \quad b=6$	*A1	Solve simultaneously to give both results.
	$\mathrm{f}^{\prime}(x)=3 x^{2}+6 x \rightarrow \mathrm{f}(x)=x^{3}+3 x^{2}(+c)$	*M1	Sub their a, b into $\mathrm{f}^{\prime}(x)$ and integrate 'correctly'. Allow $\frac{a x^{3}}{3}+\frac{b x^{2}}{2}(+c)$
	$-3=-8+12+c$	DM1	Sub $x=-2, y=-3$. Dependent on c present. Dependent also on a, b substituted.
	$\mathrm{f}(x)=x^{3}+3 x^{2}-7$	A1	
		6	

Question	Answer	Marks	Guidance
11(i)	Gradient of $A B=\frac{1}{2}$	B1	
	Equation of $A B$ is $y=\frac{1}{2} x-\frac{1}{2}$	B1	
		2	
11(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / 2(x-1)^{-\frac{1}{2}}$	B1	
	$1 / 2(x-1)^{-\frac{1}{2}}=1 / 2$. Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to their $1 / 2$	*M1	
	$x=2, y=1$	A1	
	$y-1=1 / 2(x-2)($ thro' their $(2,1) \&$ their $1 / 2) \rightarrow y=1 / 2 x$	DM1 A1	
		5	

Question	Answer	Marks	Guidance
11(iii)	EITHER: $\sin \theta=\frac{d}{1} \rightarrow d=\sin \theta$	(M1	Where θ is angle between $A B$ and the x-axis
	gradient of $A B=1 / 2 \Rightarrow \tan \theta=1 / 2 \Rightarrow \theta=26.5(7)^{\circ}$	B1	
	$d=\sin 26.5(7)^{\circ}=0.45 \quad\left(\text { or } \frac{1}{\sqrt{5}}\right)$	A1)	
	OR1: Perpendicular through O has equation $y=-2 x$	(M1	
	Intersection with $A B: \quad-2 x=1 / 2 x-1 / 2 \rightarrow\left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45\left(\text { or } \frac{1}{\sqrt{5}}\right)$	A1)	
	OR2: Perpendicular through $(2,1)$ has equation $y=-2 x+5$	(M1	
	Intersection with $A B:-2 x+5=1 / 2 x-1 / 2 \rightarrow\left(\frac{11}{5}, \frac{3}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45($ or $1 / \sqrt{ } 5)$	A1)	

Question	Answer	Marks	Guidance
11 (iii)	OR3:	(B1	
	$\Delta O A C$ has area $\frac{1}{4}\left[\right.$ where $\left.C=\left(0,-\frac{1}{2}\right)\right]$	M1 A1)	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d=\frac{1}{4} \rightarrow d=\frac{1}{\sqrt{5}}$	3	

