Question	Answer	Marks	Guidance
1	EITHER: Term is ${ }^{9} C_{3} \times 2^{6} \times(-1 / 4)^{3}$	(B1, B1, B1)	OE
	OR1: $\left(\frac{8 x^{3}-1}{4 x^{2}}\right)^{9}=\left(\frac{1}{4 x^{2}}\right)^{9}\left(8 x^{3}-1\right)^{9} \text { or }-\left(\frac{1}{4 x^{2}}\right)^{9}\left(1-8 x^{3}\right)^{9}$		
	Term is $-\frac{1}{4^{9}} \times{ }^{9} C_{3} \times 8^{6}$	(B1, B1, B1)	OE
	OR2: $(2 x)^{9}\left(1-\frac{1}{8 x^{3}}\right)^{9}$		
	Term is $2^{9} \times{ }^{9} C_{3} \times\left(-\frac{1}{8}\right)^{3}$	(B1, B1, B1)	OE
	Selected term, which must be independent of $x=-84$	B1	
		4	

Question	Answer	Marks	Guidance
2(i)	$\frac{4-x}{5}$	B1	OE
	Equate a valid attempt at f^{1} with f , or with x, or f with x $\rightarrow\left(\frac{2}{3}, \frac{2}{3}\right) \text { or }(0.667,0.667)$	M1, A1	Equating and an attempt to solve as far $x=$. Both coordinates.
		3	
2(ii)	-	B1	Line $y=4-5 x$ - must be straight, through approximately $(0,4)$ and intersecting the positive x axis near $(1,0)$ as shown.
		B1	Line $y=\frac{4-x}{5}$ - must be straight and through approximately $(0,0.8)$. No need to see intersection with x axis.
		B1	A line through $(0,0)$ and the point of intersection of a pair of straight lines with negative gradients. This line must be at 45° unless scales are different in which case the line must be labelled $y=x$.
		3	

Question	Answer	Marks	Guidance
$3(\mathrm{a})$	Uses $r=(1.05 \text { or } 105 \%)^{9,10 \text { or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
	New value $=10000 \times 1.05^{10}=(\$) 16300$	B1	
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
3(b)	EITHER: $n=1 \rightarrow 5 \quad a=5$	(B1	Uses $n=1$ to find a
	$n=2 \rightarrow 13$	B1	Correct S_{n} for any other value of $n($ e.g. $n=2)$
	$a+(a+d)=13 \rightarrow d=3$	M1 A1)	Correct method leading to $d=$
	OR: $\left(\frac{n}{2}\right)(2 a+(n-1) d)=\left(\frac{n}{2}\right)(3 n+7)$		$\left(\frac{n}{2}\right)$ maybe be ignored
	$\therefore d n+2 a-d=3 n+7 \rightarrow d n=3 n \rightarrow d=3$	(*M1A1	Method mark awarded for equating terms in n from correct S_{n} formula.
	$2 a-($ their 3$)=7, \quad a=5$	DM1 A1)	
		4	

Question	Answer	Marks	Guidance
4(i)	Pythagoras $\rightarrow r=\sqrt{72}$ OE or $\cos 45=\frac{6}{r} \rightarrow r=\frac{6}{\cos 45}=6 \sqrt{2}$	M1	Correct method leading to $r=$
	$\operatorname{Arc} D C=\sqrt{72} \times 1 / 4 \pi=\frac{3 \sqrt{2}}{2} \pi, 2.12 \pi, 6.66$	M1 A1	Use of $s=r \theta$ with their r (NOT 6) and $1 / 4 \pi$
		3	
4(ii)	Area of sector- $B D C$ is $1 / 2 \times 72 \times 1 / 4 \pi(=9 \pi$ or $28.274 \ldots$)	*M1	Use of $1 / 2 r^{2} \theta$ with their r (NOT 6) and $1 / 4 \pi$
	Area $Q=9 \pi-18$ (10.274...)	DM1	Subtracts their $1 / 2 \times 6 \times 6$ from their $1 / 2 r^{2} \theta$
	Area P is $\left(1 / 4 \pi 6^{2}-\right.$ area $\left.Q\right)=18$	M1	Uses $\left\{1 / 4 \pi \sigma^{2}-(\right.$ their area Q using $\left.\sqrt{72})\right\}$
	Ratio is $\frac{18}{9 \pi-18}\left(\frac{18}{10.274}\right) \rightarrow 1.75$	A1	
		4	

Question	Answer	Marks	Guidance
5(i)	EITHER: Uses $\tan ^{2} 2 x=\frac{\sin ^{2} 2 x}{\cos ^{2} 2 x}$	(M1	Replaces $\tan ^{2} 2 x$ by $\frac{\sin ^{2} 2 x}{\cos ^{2} 2 x}$ not $\frac{\sin ^{2}}{\cos ^{2}} 2 x$
	Uses $\sin ^{2} 2 x=\left(1-\cos ^{2} 2 x\right)$	M1	Replaces $\sin ^{2} 2 x$ by $\left(1-\cos ^{2} 2 x\right)$
	$\rightarrow 2 \cos ^{2} 2 x+3 \cos 2 x+1=0$	A1)	AG. All correct
	OR: $\tan ^{2} 2 x=\sec ^{2} 2 x-1$	(M1	Replaces $\tan ^{2} 2 x$ by $\sec ^{2} 2 x-1$
	$\sec ^{2} 2 x=\frac{1}{\cos ^{2} 2 x}$ Multiply through by $\cos ^{2} 2 x$ and rearrange	M1	$\text { Replaces } \sec ^{2} 2 x \text { by } \frac{1}{\cos ^{2} 2 x}$
	$\rightarrow 2 \cos ^{2} 2 x+3 \cos 2 x+1=0$	A1)	AG. All correct
		3	
5(ii)	$\cos 2 x=-1 / 2,-1$	M1	Uses (i) to get values for $\cos 2 x$. Allow incorrect $\operatorname{sign}(\mathrm{s})$.
	$\begin{aligned} & 2 x=120^{\circ}, 240^{\circ} \text { or } 2 x=180^{\circ} 1 \\ & x=60^{\circ} \text { or } 120^{\circ} \end{aligned}$	A1 A1 FT	A1 for 60° or $120^{\circ} \mathrm{FT}$ for $180-1$ st answer
	or $x=90^{\circ}$	A1	Any extra answer(s) in given range only penalise fourth mark so $\max 3 / 4$.
		4	

Question	Answer	Marks	Guidance
6(a)(i)	$\begin{aligned} & 4=a+1 / 2 b \\ & 3=a+b \end{aligned}$	M1	Forming simultaneous equations and eliminating one of the variables - probably a. May still include $\sin \frac{\pi}{2}$ and / or $\sin \frac{\pi}{6}$
	$\rightarrow a=5, b=-2$	A1 A1	
		3	
6(a)(ii)	$\mathrm{ff}(x)=a+b \sin (a+b \sin x)$	M1	Valid method for ff. Could be $\mathrm{f}(0)=\mathrm{N}$ followed by $\mathrm{f}(\mathrm{N})=\mathrm{M}$.
	$\mathrm{ff}(0)=5-2 \sin 5=6.92$	A1	
6(b)	EITHER: $\begin{aligned} & 10=c+d \text { and }-4=c-d \\ & 10=c-d \text { and }-4=c+d \end{aligned}$	(M1	Either pair of equations stated.
	$c=3, d=7,-7$ or ± 7	A1 A1)	Either pair solved ISW Alternately $\mathrm{c}=3 \mathbf{B 1}$, range $=14 \mathbf{~ M 1} \rightarrow d=7,-7$ or $\pm 7 \mathbf{A 1}$
		(M1 A1 A1)	Either of these diagrams can be awarded M1.Correct values of c and/or d can be awarded the A1, A1
		3	

Question	Answer	Marks	Guidance
7(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x-4=0$		Can use completing the square.
	$\rightarrow x=2, \mathrm{y}=3$	B1 B1	
	Midpoint of $A B$ is $(3,5)$	B1 FT	FT on (their 2, their 3) with (4,7)
	$\rightarrow m=\frac{7}{3}(\text { or } 2.33)$	B1	
		4	
7(ii)	Simultaneous equations $\rightarrow x^{2}-4 x-m x+9(=0)$	*M1	Equates and sets to 0 must contain m
	Use of $b^{2}-4 a c \rightarrow(m+4)^{2}-36$	DM1	Any use of $b^{2}-4 a c$ on equation set to 0 must contain m
	Solves $=0 \rightarrow-10$ or 2	A1	Correct end-points.
	$-10<m<2$	A1	Don't condone \leqslant at either or both end(s). Accept $-10<m, m<2$.
		4	

Question	Answer	Marks	
$8(\mathrm{i})$	$\frac{\mathrm{d} y}{\mathrm{~d} x}=0$	M1	Sets $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 0 and attempts to solve leading to two values for x.
	$x=1, x=4$	A1	Both values needed
		$\mathbf{2}$	

Question	Answer	Marks	Guidance
8(ii)	$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-2 x+5$	B1	
	Using both of their x values in their $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$	M1	Evidence of any valid method for both points.
	$x=1 \rightarrow(3) \rightarrow$ Minimum, $x=4 \rightarrow(-3) \rightarrow$ Maximum	A1	
		3	
8(iii)	$y=-\frac{x^{3}}{3}+\frac{5 x^{2}}{2}-4 x \quad(+\mathrm{c})$	B2, 1, 0	$+c$ not needed. -1 each error or omission.
	Uses $x=6, y=2$ in an integrand to find $\mathrm{c} \rightarrow c=8$	M1 A1	Statement of the final equation not required.
		4	

Question	Answer	Marks	Guidance
9(i)	$\overrightarrow{A B}=\left(\begin{array}{l}4 \\ 3 \\ 2\end{array}\right)$ or $\overrightarrow{B A}=\left(\begin{array}{l}-4 \\ -3 \\ -2\end{array}\right)$	M1	Use of $\mathbf{b}-\mathbf{a}$ or $\mathbf{a}-\mathbf{b}$
	$\text { e.g. } \overrightarrow{A O} \cdot \overrightarrow{A B}=-8+6+2=0 \rightarrow O \hat{A} B=90^{\circ} \mathrm{AG}$ OR $\begin{aligned} & \|\overrightarrow{O A}\|=3,\|\overrightarrow{O B}\|=\sqrt{38},\|\overrightarrow{A B}\|=\sqrt{29} \\ & O A^{2}+A B^{2}=O B^{2} \rightarrow O \hat{A} B=90^{\circ} \mathrm{AG} \end{aligned}$	M1 A1	Use of dot product with either $\overrightarrow{A O}$ or $\overrightarrow{O A}$ \& either $\overrightarrow{A B}$ or $\overrightarrow{B A}$. Must see 3 component products OR Correct use of Pythagoras. In both methods must state angle or $\theta=90^{\circ}$ or similar for A1
		3	
9(ii)	$\overrightarrow{C B}=\left(\begin{array}{c}6 \\ -6 \\ -3\end{array}\right)$ or $\overrightarrow{B C}=\left(\begin{array}{c}-6 \\ 6 \\ 3\end{array}\right)$	B1	Must correctly identify the vector.
	$\overrightarrow{O C}=\overrightarrow{O B}+\overrightarrow{B C}($ or $-\overrightarrow{C B})=\left(\begin{array}{l}0 \\ 7 \\ 4\end{array}\right)$	M1 A1	Correct link leading to $\overrightarrow{O C}$
		3	

Question	Answer	Marks	Guidance
9(iii)	$\|\overrightarrow{O A}\|=3,\|\overrightarrow{B C}\|=9,\|\overrightarrow{A B}\|=\sqrt{29}$ (5.39)	B1	For any one of these
	Area $=1 / 2(3+9) \sqrt{29}$ or $3 \sqrt{29}+3 \sqrt{29}$	M1	Correct formula(e) used for trapezium or (rectangle + triangle) or two triangles using their lengths.
	$\begin{aligned} & =6 \sqrt{29} \\ & (1 \sqrt{1044}, 2 \sqrt{261} \text { or } 3 \sqrt{116}) \end{aligned}$	A1	Exact answer in correct form.
		3	

Question	Answer	Marks	Guidance
10(i)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} \times(5 x-1)^{-\frac{1}{2}} \times 5 \quad\left(=\frac{5}{6}\right)$	B1 B1	B1 Without $\times 5 \quad$ B1 $\times 5$ of an attempt at differentiation
	$m \text { of normal }=-\frac{6}{5}$	M1	Uses $m_{1} m_{2}=-1$ with their numeric value from their $\mathrm{d} y / \mathrm{d} x$
	Equation of normal $y-3=-\frac{6}{5}(x-2)$ OE or $5 y+6 x=27$ or $\boldsymbol{y}=\frac{-6}{5} x+\frac{27}{5}$	A1	Unsimplified. Can use $y=m x+c$ to get $c=5.4$ ISW

Question	Answer	Marks	Guidance
10(ii)	EITHER: For the curve $\left(\int\right) \sqrt{5 x-1} \mathrm{~d} x=\frac{(5 x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	(B1	Correct expression without $\div 5$
		B1	For dividing an attempt at integration of y by 5
	Limits from $\frac{1}{5}$ to 2 used $\rightarrow 3.6$ or $\frac{18}{5} \mathrm{OE}$	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^{2}$)
	Normal crosses x-axis when $y=0, \rightarrow x=(41 / 2)$	M1	Uses their equation of normal, NOT tangent
	$\text { Area of triangle }=3.75 \text { or } \frac{15}{4} \mathrm{OE}$	A1	This can be obtained by integration
	$\text { Total area }=3.6+3.75=7.35, \frac{147}{20} \mathrm{OE}$	A1)	
	OR: For the curve: $\left(\int\right) \frac{1}{5}\left(y^{2}+1\right) \mathrm{d} y=\frac{1}{5}\left(\frac{y^{3}}{3}+y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used $\rightarrow 2.4$ or $\frac{12}{5} \mathrm{OE}$	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium $=\frac{1}{2}(2+41 / 2) \times 3=\frac{39}{4}$ or $9 \frac{3}{4}$	A1	This can be obtained by integration
	$\text { Shaded area }=\frac{39}{4}-\frac{12}{5}=7.35, \frac{147}{20} \mathrm{OE}$	A1)	

Question	Answer	Marks	Guidance
		7	

