Question	Answer	Marks	Guidance
1	EITHER: Term is ${}^{9}C_{3} \times 2^{6} \times (-\frac{1}{4})^{3}$	(B1, B1, B1)	OE
	$ORI: \\ \left(\frac{8x^3 - 1}{4x^2}\right)^9 = \left(\frac{1}{4x^2}\right)^9 \left(8x^3 - 1\right)^9 or - \left(\frac{1}{4x^2}\right)^9 \left(1 - 8x^3\right)^9$		
	Term is $-\frac{1}{4^9} \times {}^9C_3 \times 8^6$	(B1, B1, B1)	OE
	$OR2: (2x)^9 \left(1 - \frac{1}{8x^3}\right)^9$		
	Term is $2^9 \times {}^9C_3 \times \left(-\frac{1}{8}\right)^3$	(B1, B1, B1)	OE
	Selected term, which must be independent of $x = -84$	B1	
		4	

Question	Answer	Marks	Guidance
2(i)	$\frac{4-x}{5}$	B1	OE
	Equate a valid attempt at f ¹ with f, or with x, or f with x $\rightarrow \left(\frac{2}{3}, \frac{2}{3}\right)$ or (0.667, 0.667)	M1, A1	Equating and an attempt to solve as far $x =$. Both coordinates.
		3	
2(ii)		B1	Line $y = 4 - 5x$ – must be straight, through approximately (0,4) and intersecting the positive <i>x</i> axis near (1,0) as shown.
		B1	Line $y = \frac{4-x}{5}$ – must be straight and through approximately (0, 0.8). No need to see intersection with <i>x</i> axis.
		B1	A line through (0,0) and the point of intersection of a pair of <u>straight</u> lines with negative gradients. This line must be at 45° unless scales are different in which case the line must be labelled $y=x$.
		3	

Question	Answer	Marks	Guidance
3(a)	Uses $r = (1.05 \text{ or } 105\%)^{9, 10 \text{ or } 11}$	B1	Used to multiply repeatedly or in any GP formula.
	New value = $10000 \times 1.05^{10} = (\$)16\ 300$	B1	
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
3(b)	$EITHER: n = 1 \rightarrow 5 \qquad a = 5$	(B1	Uses $n = 1$ to find a
	$n = 2 \rightarrow 13$	B1	Correct S_n for any other value of n (e.g. $n = 2$)
	$a + (a + d) = 13 \longrightarrow d = 3$	M1 A1)	Correct method leading to $d =$
	$OR: \\ \left(\frac{n}{2}\right) (2a + (n-1)d) = \left(\frac{n}{2}\right) (3n+7)$		$\left(\frac{n}{2}\right)$ maybe be ignored
	$\therefore dn + 2a - d = 3n + 7 \rightarrow dn = 3n \rightarrow d = 3$	(*M1A1	Method mark awarded for equating terms in n from correct S_n formula.
	2a - (their 3) = 7, a = 5	DM1 A1)	
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
4(i)	Pythagoras $\rightarrow r = \sqrt{72}$ OE	M1	Correct method leading to $r =$
	or $\cos 45 = \frac{6}{r} \rightarrow r = \frac{6}{\cos 45} = 6\sqrt{2}$		
	Arc $DC = \sqrt{72} \times \frac{1}{4}\pi = \frac{3\sqrt{2}}{2}\pi$, 2.12 π , 6.66	M1 A1	Use of $s=r\theta$ with their <i>r</i> (NOT 6) and $\frac{1}{4}\pi$
		3	
4(ii)	Area of sector- <i>BDC</i> is $\frac{1}{2} \times 72 \times \frac{1}{4}\pi$ (= 9π or 28.274)	*M1	Use of $\frac{1}{2}r^2\theta$ with their r (NOT 6) and $\frac{1}{4}\pi$
	Area $Q = 9\pi - 18 (10.274)$	DM1	Subtracts their $\frac{1}{2} \times 6 \times 6$ from their $\frac{1}{2}r^2\theta$
	Area <i>P</i> is $(\frac{1}{4}\pi 6^2 - \text{area } Q) = 18$	M1	Uses $\{\frac{1}{4}\pi 6^2 - (\text{their area Q using }\sqrt{72})\}$
	Ratio is $\frac{18}{9\pi - 18} \left(\frac{18}{10.274}\right) \rightarrow 1.75$	A1	
		4	

October/November
2017

Question	Answer	Marks	Guidance
5(i)	EITHER: Uses $\tan^2 2x = \frac{\sin^2 2x}{\cos^2 2x}$	(M1	Replaces $\tan^2 2x$ by $\frac{\sin^2 2x}{\cos^2 2x}$ not $\frac{\sin^2}{\cos^2} 2x$
	Uses $\sin^2 2x = (1 - \cos^2 2x)$	M1	Replaces $\sin^2 2x$ by $(1 - \cos^2 2x)$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
	$OR: \tan^2 2x = \sec^2 2x - 1$	(M1	Replaces $\tan^2 2x$ by $\sec^2 2x - 1$
	$\sec^{2} 2x = \frac{1}{\cos^{2} 2x}$ Multiply through by $\cos^{2} 2x$ and rearrange	M1	Replaces $\sec^2 2x$ by $\frac{1}{\cos^2 2x}$
	$\rightarrow 2\cos^2 2x + 3\cos 2x + 1 = 0$	A1)	AG. All correct
		3	
5(ii)	$\cos 2x = -\frac{1}{2}, -1$	M1	Uses (i) to get values for $\cos 2x$. Allow incorrect sign(s).
	$2x = 120^{\circ}, 240^{\circ} \text{ or } 2x = 180^{\circ}1$ $x = 60^{\circ} \text{ or } 120^{\circ}$	A1 A1 FT	A1 for 60° or 120° FT for 180–1st answer
	or $x = 90^{\circ}$	A1	Any extra answer(s) in given range only penalise fourth mark so max 3/4.
		4	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
6(a)(i)	$4 = a + \frac{1}{2}b$ 3 = a + b	M1	Forming simultaneous equations and eliminating one of the variables – probably <i>a</i> . May still include $\sin \frac{\pi}{2}$ and / or $\sin \frac{\pi}{6}$
	$\rightarrow a = 5, b = -2$	A1 A1	
		3	
6(a)(ii)	ff(x) = a + bsin(a + bsinx)	M1	Valid method for ff. Could be $f(0) = N$ followed by $f(N) = M$.
	$ff(0) = 5 - 2\sin 5 = 6.92$	A1	
6(b)	EITHER: 10 = c + d and $-4 = c - d10 = c - d$ and $-4 = c + d$	(M1	Either pair of equations stated.
	$c = 3, d = 7, -7 \text{ or } \pm 7$	A1 A1)	Either pair solved ISW
			Alternately c=3 B1, range = $14 \text{ M1} \rightarrow d = 7, -7 \text{ or } \pm 7 \text{ A1}$
	$OR:$ $y = 3 + 7 \sin(x)$ $y = 3 + 7 \sin(x)$ $y = 3 + 7 \sin(x)$ $y = 3 - 7 \sin(x)$ $y = 4 + 5 + 7 \sin(x)$	(M1 A1 A1)	Either of these diagrams can be awarded M1.Correct values of c and/or d can be awarded the A1, A1
		3	

Question	Answer	Marks	Guidance
7(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x - 4 = 0$		Can use completing the square.
	$\rightarrow x = 2, y = 3$	B1 B1	
	Midpoint of <i>AB</i> is (3, 5)	B1 FT	FT on (<i>their</i> 2, <i>their</i> 3) with (4,7)
	$\rightarrow m = \frac{7}{3} (\text{or } 2.33)$	B1	
		4	
7(ii)	Simultaneous equations $\rightarrow x^2 - 4x - mx + 9(=0)$	*M1	Equates and sets to 0 must contain m
	Use of $b^2 - 4ac \rightarrow (m+4)^2 - 36$	DM1	Any use of $b^2 - 4ac$ on equation set to 0 must contain m
	Solves = $0 \rightarrow -10$ or 2	A1	Correct end-points.
	-10 < m < 2	A1	Don't condone \leq at either or both end(s). Accept $-10 < m, m < 2$.
		4	

Question	Answer	Marks	Guidance
8(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 0$	M1	Sets $\frac{dy}{dx}$ to 0 and attempts to solve leading to two values for <i>x</i> .
	x = 1, x = 4	A1	Both values needed
		2	

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
8(ii)	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -2x + 5$	B1	
	Using both of their x values in their $\frac{d^2 y}{dx^2}$	M1	Evidence of any valid method for both points.
	$x = 1 \rightarrow (3) \rightarrow$ Minimum, $x = 4 \rightarrow (-3) \rightarrow$ Maximum	A1	
		3	
8(iii)	$y = -\frac{x^3}{3} + \frac{5x^2}{2} - 4x (+c)$	B2, 1, 0	+c not needed. -1 each error or omission.
	Uses $x = 6$, $y = 2$ in an integrand to find $c \rightarrow c = 8$	M1 A1	Statement of the final equation not required.
		4	

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

October/November
2017

Question	Answer	Marks	Guidance
9(i)	$\overline{AB} = \begin{pmatrix} 4\\3\\2 \end{pmatrix} \text{ or } \overline{BA} = \begin{pmatrix} -4\\-3\\-2 \end{pmatrix}$	M1	Use of b – a or a – b
	e.g. \overrightarrow{AO} . $\overrightarrow{AB} = -8 + 6 + 2 = 0 \rightarrow O\hat{AB} = 90^{\circ} \text{ AG}$	M1 A1	Use of dot product with either $\overrightarrow{AO} \text{ or } \overrightarrow{OA} \text{ \& either } \overrightarrow{AB} \text{ or } \overrightarrow{BA}$. Must see 3 component products
	OR		
	$\left \overline{OA}\right = 3, \left \overline{OB}\right = \sqrt{38}, \left \overline{AB}\right = \sqrt{29}$		OR Correct use of Pythagoras.
	$OA^2 + AB^2 = OB^2 \rightarrow O\hat{A}B = 90^\circ \text{ AG}$		In both methods must state angle or $\theta = 90^{\circ}$ or similar for A1
		3	
9(ii)	$\overrightarrow{CB} = \begin{pmatrix} 6 \\ -6 \\ -3 \end{pmatrix} \text{ or } \overrightarrow{BC} = \begin{pmatrix} -6 \\ 6 \\ 3 \end{pmatrix}$	B1	Must correctly identify the vector.
	$\overrightarrow{OC} = \overrightarrow{OB} + \overrightarrow{BC} \text{ (or } -\overrightarrow{CB}\text{)} = \begin{pmatrix} 0\\ 7\\ 4 \end{pmatrix}$	M1 A1	Correct link leading to \overrightarrow{OC}
		3	

Question	Answer	Marks	Guidance
9(iii)	$\left \overrightarrow{OA}\right = 3, \left \overrightarrow{BC}\right = 9, \left \overrightarrow{AB}\right = \sqrt{29} (5.39)$	B1	For any one of these
	Area = $\frac{1}{2}(3+9)\sqrt{29}$ or $3\sqrt{29} + 3\sqrt{29}$	M1	Correct formula(e) used for trapezium or (rectangle + triangle) or two triangles using their lengths.
	$= 6\sqrt{29} (1\sqrt{1044}, 2\sqrt{261} \text{ or } 3\sqrt{116})$	A1	Exact answer in correct form.
		3	

Question	Answer	Marks	Guidance
10(i)	$\frac{dy}{dx} = \frac{1}{2} \times (5x - 1)^{-\frac{1}{2}} \times 5 \qquad (=\frac{5}{6})$	B1 B1	B1 Without \times 5 B1 \times 5 of an attempt at differentiation
	$m \text{ of normal} = -\frac{6}{5}$	M1	Uses $m_1m_2 = -1$ with their numeric value from their dy/dx
	Equation of normal $y-3 = -\frac{6}{5}(x-2)$ OE or $5y + 6x = 27$ or $y = \frac{-6}{5}x + \frac{27}{5}$	A1	Unsimplified. Can use $y = mx + c$ to get $c = 5.4$ ISW

Question	Answer	Marks	Guidance
10(ii)	EITHER:	(B1	Correct expression without ÷5
	For the curve $(\int)\sqrt{5x-1}dx = \frac{(5x-1)^{\frac{3}{2}}}{\frac{3}{2}} \div 5$	B1	For dividing an attempt at integration of <i>y</i> by 5
	Limits from $\frac{1}{5}$ to 2 used \rightarrow 3.6 or $\frac{18}{5}$ OE	M1 A1	Using $\frac{1}{5}$ and 2 to evaluate an integrand (may be $\int y^2$)
	Normal crosses x-axis when $y = 0, \rightarrow x = (4\frac{1}{2})$	M1	Uses their equation of normal, NOT tangent
	Area of triangle = 3.75 or $\frac{15}{4}$ OE	A1	This can be obtained by integration
	Total area=3.6 + 3.75 = 7.35, $\frac{147}{20}$ OE	A1)	
	<i>OR:</i> For the curve: $\left(\int\right)\frac{1}{5}\left(y^2+1\right)dy = \frac{1}{5}\left(\frac{y^3}{3}+y\right)$	(B2, 1, 0	-1 each error or omission.
	Limits from 0 to 3 used $\rightarrow 2.4$ or $\frac{12}{5}$ OE	M1 A1	Using 0 and 3 to evaluate an integrand
	Uses their equation of normal, NOT tangent.	M1	Either to find side length for trapezium or attempt at integrating between 0 and 3
	Area of trapezium = $\frac{1}{2}(2+4\frac{1}{2}) \times 3 = \frac{39}{4} \text{ or } 9\frac{3}{4}$	A1	This can be obtained by integration
	Shaded area = $\frac{39}{4} - \frac{12}{5} = 7.35, \frac{147}{20}$ OE	A1)	

October/Novembe	r
2017	7

Question	Answer	Marks	Guidance
		7	