Question	Answer	Marks	Guidance
1	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^{1/2} - 3 - 2x^{-1/2}$	B2,1,0	
	at $x = 4$, $\frac{dy}{dx} = 6 - 3 - 1 = 2$	M1	
	Equation of tangent is $y = 2(x-4)$ OE	A1FT	Equation through (4, 0) with <i>their</i> gradient
		4	

Question	Answer	Marks	Guidance
2	$f'(x) = 3x^2 - 2x - 8$	M1	Attempt differentiation
	$-\frac{4}{3}$, 2 SOI	A1	
	$f'(x) > 0 \implies x < -\frac{4}{3}$ SOI	M1	Accept $x > 2$ in addition. FT <i>their</i> solutions
	Largest value of <i>a</i> is $-\frac{4}{3}$	A1	Statement in terms of <i>a</i> . Accept $a \le -\frac{4}{3}$ or $a < -\frac{4}{3}$. Penalise extra solutions
		4	

9709/11

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
3(i)	$\frac{3a}{1-r} = \frac{a}{1+2r}$	M1	Attempt to equate 2 sums to infinity. At least one correct
	3 + 6r = 1 - r	DM1	Elimination of 1 variable (<i>a</i>) at any stage and multiplication
	$r = -\frac{2}{7}$	A1	
		3	
3(ii)	$\frac{1}{2}n\left[2\times15+(n-1)4\right]=\frac{1}{2}n\left[2\times420+(n-1)(-5)\right]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	<i>n</i> = 91	A1	
		3	

9709/1	1

Question	Answer	Marks	Guidance
4(i)	$V = \frac{1}{3}\pi r^2 (18 - r) = 6\pi r^2 - \frac{1}{3}\pi r^3$	B1	AG
		1	
4(ii)	$\frac{\mathrm{d}V}{\mathrm{d}r} = 12\pi r - \pi r^2 = 0$	M1	Differentiate and set $= 0$
	$\pi r (12 - r) = 0 \rightarrow r = 12$	A1	
	$\frac{\mathrm{d}^2 V}{\mathrm{d}r^2} = 12\pi - 2\pi r$	M1	
	Sub $r = 12 \rightarrow 12\pi - 24\pi = -12\pi \rightarrow MAX$	A1	AG
		4	
4(iii)	Sub $r = 12$, $h = 6 \rightarrow \text{Max} V = 288\pi$ or 905	B1	
		1	

Question	Answer	Marks	Guidance
5(i)	$\cos A = 8/10 \rightarrow A = 0.6435$	B1	AG Allow other valid methods e.g. $\sin A = 6/10$
		1	
5(ii)	<i>EITHER:</i> Area $\triangle ABC = \frac{1}{2} \times 16 \times 6$ or $\frac{1}{2} \times 10 \times 16 \sin 0.6435 = 48$	(M1A1	
	Area 1 sector $\frac{1}{2} \times 10^2 \times 0.6435$	M1	
	Shaded area = $2 \times their \operatorname{sector} - their \Delta ABC$	M1)	
	$OR: \Delta BDE = 12, \ \Delta BDC = 30$	(B1 B1	
	Sector = 32.18	M1	
	$2 \times \text{segment} + \Delta BDE$	M1)	
	=16.4	A1	
		5	

9709/11

Cambridge International AS/A Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
6(i)	Mid-point of $AB = (3, 5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $AB = 2$	B1	
	Eqn of perp. bisector is $y-5 = -\frac{1}{2}(x-3) \rightarrow 2y = 13 - x$	M1A1	AG For M1 FT from mid-point and gradient of <i>AB</i>
		4	
6(ii)	$-3x + 39 = 5x^{2} - 18x + 19 \rightarrow (5)(x^{2} - 3x - 4)(=0)$	M1	Equate equations and form 3-term quadratic
	x = 4 or - 1	A1	
	$y = 4^{1/2}$ or 7	A1	
	$CD^2 = 5^2 + 2^{1/2^2} \rightarrow CD = \sqrt{\frac{125}{4}}$	M1A1	Or equivalent integer fractions ISW
		5	

9709/11

Cambridge International AS/A Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance	
7(a)	a = -2, b = 3	B1B1		
		2		
7(b)(i)	$s + s2 - sc + 2c + 2sc - 2c2 = s + sc \rightarrow s2 - 2c2 + 2c = 0$	B1	Expansion of brackets must be correct	
	$1 - \cos^2\theta - 2\cos^2\theta + 2\cos\theta = 0$	M1	Uses $s^2 = 1 - c^2$	
	$3\cos^2\theta - 2\cos\theta - 1 = 0$	A1	AG	
		3		
7(b)(ii)	$\cos\theta = 1$ or $-\frac{1}{3}$	B1		
	$\theta = 0^{\circ} \text{ or } 109.5^{\circ} \text{ or } -109.5^{\circ}$	B1B1B1 FT	FT for – <i>their</i> 109.5°	
		4		

Question	Answer	Marks	Guidance
8(a)	$EITHER:$ $\overline{PR} = 2\overline{PQ} = 2(\mathbf{q} - \mathbf{p})$	(B1	
	$\overrightarrow{OR} = \mathbf{p} + 2\mathbf{q} - 2\mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	
	$\frac{OR:}{QR} = \overline{PQ} = \mathbf{q} - \mathbf{p}$	(B1	
	$\overrightarrow{OR} = \overrightarrow{OQ} + \overrightarrow{QR} = \mathbf{q} + \mathbf{q} - \mathbf{p} = 2\mathbf{q} - \mathbf{p}$	M1A1)	Or other valid method
		3	
8(b)	$6^2 + a^2 + b^2 = 21^2$ SOI	B1	
	18 + 2a + 2b = 0	B1	
	$a^2 + (-a - 9)^2 = 405$	M1	Correct method for elimination of a variable. (Or same equation in b)
	$(2)(a^2+9a-162)(=0)$	A1	Or same equation in <i>b</i>
	a = 9 or -18	A1	
	b = -18 or 9	A1	
		6	

Question	Answer	Marks	Guidance
9(i)	gg(x) = g(2x - 3) = 2(2x - 3) - 3 = 4x - 9	M1A1	
		2	
9(ii)	$y = \frac{1}{x^2 - 9} \to x^2 = \frac{1}{y} + 9$ OE	M1	Invert; add 9 to both sides or with x/y interchanged
	$f^{-1}(x) = \sqrt{\frac{1}{x} + 9}$	A1	
	Attempt soln of $\sqrt{\frac{1}{x} + 9} > 3$ or attempt to find range of f. (y > 0)	M1	
	Domain is $x > 0$ CAO	A1	May simply be stated for B2
		4	

Question	Answer	Marks	Guidance
9(iii)	EITHER:	(M1	
	$\frac{1}{\left(2x-3\right)^2-9} = \frac{1}{7}$		
	$(2x-3)^2 = 16$ or $4x^2 - 12x - 7 = 0$	A1	
	x = 7/2 or -1/2	A1	
	x = 7/2 only	A1)	
	OR:	(M1	
	$\mathbf{g}(\mathbf{x}) = \mathbf{f}^{-1}\left(\frac{1}{7}\right)$		
	g(x) = 4	A1	
	2x - 3 = 4	A1	
	x = 7/2	A1)	
		4	

Question	Answer	Marks	Guidance
10(i)	Area = $\int \frac{1}{2} \left(x^4 - 1 \right) dx = \frac{1}{2} \left[\frac{x^5}{5} - x \right]$	*B1	
	$\frac{1}{2}\left[\frac{1}{5}-1\right]=0 = (-)\frac{2}{5}$	DM1A1	Apply limits $0 \rightarrow 1$
		3	
10(ii)	Vol = $\pi \int y^2 dx$ = $\frac{1}{4} (\pi) \int (x^8 - 2x^4 + 1) dx$	M1	(If middle term missed out can only gain the M marks)
	$\frac{1}{4}(\pi)\left[\frac{x^9}{9}-\frac{2x^5}{5}+x\right]$	*A1	
	$\frac{1}{4}(\pi)\left[\left(\frac{1}{9}-\frac{2}{5}+1\right]-0\right]$	DM1	
	$\frac{8\pi}{45}$ or 0.559	A1	
		4	

^{9709/11}

Question	Answer	Marks	Guidance
10(iii)	Vol = $\pi \int x^2 dy = (\pi) \int (2y+1)^{1/2} dy$	M1	Condone use of x if integral is correct
	$(\pi) \left[\frac{(2y+1)^{3/2}}{3/2} \right] [\div 2]$	*A1A1	Expect $(\pi)\left[\frac{(2y+1)^{3/2}}{3}\right]$
	$\left[(\pi) \left[\frac{1}{3} - 0 \right] \right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	Apply $-\frac{1}{2} \rightarrow 0$
		5	