Question	Answer	Marks	Guidance
1	$\frac{\mathrm{~d} y}{\mathrm{~d} x}=3 x^{1 / 2}-3-2 x^{-1 / 2}$	B2,1,0	
	at $x=4, \frac{\mathrm{~d} y}{\mathrm{~d} x}=6-3-1=2$	M1	
	Equation of tangent is $y=2(x-4)$ OE	A1FT	Equation through $(4,0)$ with their gradient
		$\mathbf{4}$	

Question	Answer	Marks	Guidance
2	$\mathrm{f}^{\prime}(x)=3 x^{2}-2 x-8$	M1	Attempt differentiation
	$-\frac{4}{3}, 2 \mathrm{SOI}$	A1	
	$\mathrm{f}^{\prime}(x)>0 \Rightarrow x<-\frac{4}{3} \mathrm{SOI}$	M1	Accept $x>2$ in addition. FT their solutions
	Largest value of a is $-\frac{4}{3}$	A1	Statement in terms of a. Accept $a \leqslant-\frac{4}{3}$ or $a<-\frac{4}{3}$. Penalise extra solutions
		4	

Question	Answer	Marks	Guidance
3(i)	$\frac{3 a}{1-r}=\frac{a}{1+2 r}$	M1	Attempt to equate 2 sums to infinity. At least one correct
	$3+6 r=1-r$	DM1	Elimination of 1 variable (a) at any stage and multiplication
	$r=-\frac{2}{7}$	A1	
		3	
3(ii)	$1 / 2 n[2 \times 15+(n-1) 4]=1 / 2 n[2 \times 420+(n-1)(-5)]$	M1A1	Attempt to equate 2 sum to n terms, at least one correct (M1). Both correct (A1)
	$n=91$	A1	
		3	

Question	Answer	Marks	Guidance
4(i)	$V=\frac{1}{3} \pi r^{2}(18-r)=6 \pi r^{2}-\frac{1}{3} \pi r^{3}$	B1	AG
		1	
4(ii)	$\frac{\mathrm{d} V}{\mathrm{~d} r}=12 \pi r-\pi r^{2}=0$	M1	Differentiate and set $=0$
	$\pi r(12-r)=0 \rightarrow r=12$	A1	
	$\frac{\mathrm{d}^{2} V}{\mathrm{~d} r^{2}}=12 \pi-2 \pi r$	M1	
	Sub $r=12 \rightarrow 12 \pi-24 \pi=-12 \pi \rightarrow$ MAX	A1	AG
		4	
4(iii)	Sub $r=12, h=6 \rightarrow \mathrm{Max} V=288 \pi$ or 905	B1	
		1	

Question	Answer	Marks	Guidance
5(i)	$\cos A=8 / 10 \rightarrow A=0.6435$	B1	AG Allow other valid methods e.g. $\sin A=6 / 10$
		1	
5(ii)	EITHER: Area $\triangle A B C=1 / 2 \times 16 \times 6$ or $1 / 2 \times 10 \times 16 \sin 0.6435=48$	(M1A1	
	Area 1 sector $1 / 2 \times 10^{2} \times 0.6435$	M1	
	Shaded area $=2 \times$ their sector - their $\triangle A B C$	M1)	
	OR: $\triangle B D E=12, \triangle B D C=30$	(B1 B1	
	Sector $=32.18$	M1	
	$2 \times$ segment $+\triangle B D E$	M1)	
	$=16.4$	A1	
		5	

Question	Answer	Marks	Guidance
6(i)	Mid-point of $A B=(3,5)$	B1	Answers may be derived from simultaneous equations
	Gradient of $A B=2$	B1	
	Eqn of perp. bisector is $y-5=-1 / 2(x-3) \rightarrow 2 y=13-x$	M1A1	AG For M1 FT from mid-point and gradient of $A B$
		4	
6(ii)	$-3 x+39=5 x^{2}-18 x+19 \rightarrow(5)\left(x^{2}-3 x-4\right)(=0)$	M1	Equate equations and form 3-term quadratic
	$x=4$ or -1	A1	
	$y=41 / 2$ or 7	A1	
	$C D^{2}=5^{2}+21 \frac{1}{2}^{2} \rightarrow C D=\sqrt{\frac{125}{4}}$	M1A1	Or equivalent integer fractions ISW
		5	

Question	Answer	Marks	Guidance
7(a)	$a=-2, \quad b=3$	B1B1	
		2	
7(b)(i)	$s+s^{2}-s c+2 c+2 s c-2 c^{2}=s+s c \rightarrow s^{2}-2 c^{2}+2 c=0$	B1	Expansion of brackets must be correct
	$1-\cos ^{2} \theta-2 \cos ^{2} \theta+2 \cos \theta=0$	M1	Uses $s^{2}=1-c^{2}$
	$3 \cos ^{2} \theta-2 \cos \theta-1=0$	A1	AG
		3	
7(b)(ii)	$\cos \theta=1 \text { or }-\frac{1}{3}$	B1	
	$\theta=0^{\circ}$ or 109.5° or -109.5°	B1B1B1 FT	FT for - their 109.5°
		4	

Question	Answer	Marks	Guidance
8(a)	EITHER: $\overrightarrow{P R}=2 \overrightarrow{P Q}=2(\mathbf{q}-\mathbf{p})$	(B1	
	$\overrightarrow{O R}=\mathbf{p}+2 \mathbf{q}-2 \mathbf{p}=2 \mathbf{q}-\mathbf{p}$	M1A1)	
	$\frac{O R:}{\overrightarrow{Q R}=\overrightarrow{P Q}=\mathbf{q}-\mathbf{p}}$	(B1	
	$\overrightarrow{O R}=\overrightarrow{O Q}+\overrightarrow{Q R}=\mathbf{q}+\mathbf{q}-\mathbf{p}=2 \mathbf{q}-\mathbf{p}$	M1A1)	Or other valid method
		3	
8(b)	$6^{2}+a^{2}+b^{2}=21^{2}$ SOI	B1	
	$18+2 a+2 b=0$	B1	
	$a^{2}+(-a-9)^{2}=405$	M1	Correct method for elimination of a variable. (Or same equation in b)
	$(2)\left(a^{2}+9 a-162\right)(=0)$	A1	Or same equation in b
	$a=9$ or -18	A1	
	$b=-18$ or 9	A1	
		6	

Question	Answer	Marks	Guidance
9(i)	$\operatorname{gg}(x)=\mathrm{g}(2 x-3)=2(2 x-3)-3=4 x-9$	M1A1	
		2	
9(ii)	$y=\frac{1}{x^{2}-9} \rightarrow x^{2}=\frac{1}{y}+9 \mathrm{OE}$	M1	Invert; add 9 to both sides or with x / y interchanged
	$\mathrm{f}^{-1}(x)=\sqrt{\frac{1}{x}+9}$	A1	
	Attempt soln of $\sqrt{\frac{1}{x}+9}>3$ or attempt to find range of f . $(y>0)$	M1	
	Domain is $x>0 \mathrm{CAO}$	A1	May simply be stated for $\mathbf{B 2}$
		4	

Question	Answer	Marks	Guidance
9(iii)	EITHER: $\frac{1}{(2 x-3)^{2}-9}=\frac{1}{7}$	(M1	
	$(2 x-3)^{2}=16$ or $4 x^{2}-12 x-7=0$	A1	
	$x=7 / 2$ or $-1 / 2$	A1	
	$x=7 / 2$ only	A1)	
	OR: $\mathrm{g}(x)=\mathrm{f}^{-1}\left(\frac{1}{7}\right)$	(M1	
	$\mathrm{g}(x)=4$	A1	
	$2 x-3=4$	A1	
	$x=7 / 2$	A1)	
		4	

Question	Answer	Marks	Guidance
10(i)	Area $=\int 112\left(x^{4}-1\right) \mathrm{d} x=1 / 2\left[\frac{x^{5}}{5}-x\right]$	*B1	
	$1 / 2\left[\frac{1}{5}-1\right]-0=(-) \frac{2}{5}$	DM1A1	Apply limits $0 \rightarrow 1$
		3	
10(ii)	Vol $=\pi \int y^{2} \mathrm{~d} x=1 / 4(\pi) \int\left(x^{8}-2 x^{4}+1\right) \mathrm{d} x$	M1	(If middle term missed out can only gain the M marks)
	$1 / 4(\pi)\left[\frac{x^{9}}{9}-\frac{2 x^{5}}{5}+x\right]$	*A1	
	$1 / 4(\pi)\left[\left(\frac{1}{9}-\frac{2}{5}+1\right]-0\right.$	DM1	
	$\frac{8 \pi}{45}$ or 0.559	A1	
		4	

Question	Answer	Marks	
$10($ iii)	Vol $=\pi \int x^{2} \mathrm{~d} y=(\pi) f(2 y+1)^{1 / 2} \mathrm{~d} y$	M1	Condone use of x if integral is correct
	$(\pi)\left[\frac{(2 y+1)^{3 / 2}}{3 / 2}\right][\div 2]$	*A1A1	Expect $(\pi)\left[\frac{(2 y+1)^{3 / 2}}{3}\right]$
	$(\pi)\left[\frac{1}{3}-0\right]$	DM1	
	$\frac{\pi}{3}$ or 1.05	A1	Apply $-\frac{1}{2} \rightarrow 0$
		$\mathbf{5}$	

