Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

$\mathbf{1}$		$\mathrm{e}^{-3.5}\left(1+3.5+\frac{3.5^{2}}{2!}\right)$ $=0.321(3 \mathrm{sf})$	M2	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

5 (i)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(\text { free gift })=0.3 \text { or } p=0.3 \\ & \left.\mathrm{H}_{1}: \mathrm{P} \text { (free gift }\right)<0.3 \text { or } p<0.3 \end{aligned}$	B1	[1]	
(ii)	$\begin{aligned} & \mathrm{P}(X \leqslant 2)= \\ & 0.7^{20}+20 \times 0.7^{19} \times 0.3+{ }^{20} \mathrm{C}_{2} \times 0.7^{18} \times \\ & 0.3^{2} \\ & =0.03548 \text { or } 0.0355 \\ & \mathrm{P}(X \leqslant 3)= \\ & 0.03548{ }^{\prime}+{ }^{20} \mathrm{C}_{3} \times 0.7^{17} \times 0.3^{3}(= \\ & 0.107) \end{aligned}$ One comparison with 0.05 seen $\mathrm{P}(\text { Type } \mathrm{I} \text { error })=0.0355(3 \mathrm{sf})$	M1* A1 M1* M1* DA1 ${ }^{\wedge}$	[5]	$\mathrm{P}(X \leqslant 2)$ attempted $\mathrm{P}(X \leqslant 3)$ attempted or implied by fully correct methods for $\mathrm{P}(X \leqslant 2)$ and $\mathrm{P}(X \leqslant 3)$ dep on all 3 Ms
(iii)	$\begin{aligned} & \mathrm{P}(X \leqslant 3)={ }^{\prime} 0.107 \\ & { }^{\prime} 0.107 \prime>0.05 \\ & \text { or } \mathrm{cv}=2 \text { and compare } 3>2 \end{aligned}$ No evidence to reject claim oe	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \downarrow \end{aligned}$	[2]	Compare their $\mathrm{P}(X \leqslant 3)$ with 0.05 No evidence that 30% is not correct oe ft their 0.107
6 (i)	$\begin{aligned} & \operatorname{est}(\mu)=3.4 \\ & \operatorname{est}\left(\sigma^{2}\right)=\frac{100}{99}\left(\frac{1356}{100}-3.4^{\prime 2}\right) \\ & =2.02(0202) \\ & z=1.96 \end{aligned}$ $\begin{aligned} & 3.4 \pm z \times \sqrt{\frac{2.0202022^{\prime}}{100}} \\ & =3.12 \text { to } 3.68(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 B1 M1 A1	[6]	$1 / 99\left(1356-340^{2} / 100\right)$ or 200/99 correct working only allow from unbiased or biased variance
(ii)	Mean should be 3 CI does not include 3 Machine probably not working properly	B1* DB1^	[2]	stated or implied \checkmark their CI or evidence that....
$7 \quad$ (i)	$\begin{aligned} & 1-\mathrm{e}^{-1}(1+1) \\ & 1-\mathrm{e}^{-1.5}\left(1+1.5+\frac{1.2^{2}}{2!}\right)(=0.26424) \\ & (=0.19115) \\ & { }^{\prime} 0.26424{ }^{\prime} \times{ }^{\prime} 0.19115 \prime \\ & \\ & =0.0505(3 \mathrm{sf}) \end{aligned}$	B1 B1 M1 A1	[4]	B1 for either λ correct. B1 for either correct expression with correct λ product of their values for $\leqslant 2$ and $\leqslant 3$ from Poisson, need correct form " 1 - .. ", but allow incorrect λ values and end errors accept 0.0504

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	73

(ii)	$\begin{aligned} & \lambda=30 \\ & \mathrm{~N}(30,30) \\ & \frac{35.5-30}{\sqrt{30}} \quad(=1.004) \\ & \left.\Phi\left({ }^{‘} 1.004\right)^{\prime}\right) \\ & =0.842(3 \mathrm{sf}) \end{aligned}$	B1 B1 M1 M1 A1	[5]	seen or implied, need $N(\lambda, \lambda)$ allow with wrong or no cc or no $\sqrt{ }$ consistent with their working
8 (i)	$\sigma_{X}, \sigma_{Z}, \sigma_{Y}, \sigma_{W}$ or X, Z, Y, W	B2	[2]	B1 if two adjacent sds interchanged, ie $\sigma_{Z}, \sigma_{X}, \sigma_{Y}, \sigma_{W}$ or $\sigma_{X}, \sigma_{Y}, \sigma_{Z}, \sigma_{W}$ or $\sigma_{X}, \sigma_{Z}, \sigma_{W}, \sigma_{Y}$ B1 for correct order reversed
(ii) (a)	Mean $=0$ stated or found or " -0 " seen $\begin{aligned} & \frac{1}{18} \int_{-3}^{3} x^{4} \mathrm{~d} x-0 \\ & =\frac{1}{18}\left[\frac{x^{5}}{5}\right]_{-3}^{3} \\ & =\frac{1}{18}\left[\frac{3^{5}}{5}+\frac{3^{5}}{5}\right] \text { oe } \\ & =5.4 \end{aligned}$ $\begin{align*} & \mathrm{sd}=\sqrt{ } 5.4 \text { or } \sqrt{\frac{1}{18}\left[\frac{3^{5}}{5}+\frac{3^{5}}{5}\right]} \text { or } 2.324 \\ & \mathrm{sd}=2.32(3 \mathrm{sf}) \tag{AG} \end{align*}$	B1 M1 A1	[3]	Attempt integral ${ }^{2} \mathrm{f}(x)$. Ignore limits Allow without " -0 " Must see $\sqrt{\text { correct expression or 5.4 }}$ or 2.324 or better
(b)	$\begin{aligned} & \frac{1}{18} \int_{2.324^{\prime}}^{3} x^{2} \mathrm{~d} x \\ & \frac{1}{18}\left[\frac{x^{3}}{3}\right]^{\prime}{ }_{2.324^{\prime}}^{3}=\frac{1}{18}\left[\frac{3^{3}}{3}-\frac{2.324^{3^{3}}}{3}\right] \\ & =0.268(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1	[3]	Attempt to integrate $\mathrm{f}(x)$, ignore limits Sub correct limits into correct integral Allow 0.269
(c)	0	B1	[1]	

