Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	72

1	$\begin{aligned} & \left(\frac{508}{8}\right)=63.5 \\ & \left(\Sigma x^{2}=32360.12\right) \\ & \frac{8}{7}\left(\frac{32360.12^{\prime}}{8}-63.5^{\prime 2}\right) \\ & =14.6(3 \text { sf }) \text { or } 2553 / 175 \end{aligned}$	B1 M1 A1	[3]	oe From correct working
2 (i)	$\mathrm{H}_{0}: \mathrm{P}(6)=1 / 6 \quad \mathrm{H}_{1}: \mathrm{P}(6)<1 / 6$	B1	[1]	Allow $\mathrm{H}_{0}: p=1 / 6 \quad \mathrm{H}_{1}: p<1 / 6$
(ii)	$\begin{aligned} & \left(\frac{5}{6}\right)^{15} \\ & =0.065>0.05 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for $0.065>0.025$
(iii)	$\left(\frac{5}{6}\right)^{16}=0.054 \text { and }\left(\frac{5}{6}\right)^{17}=0.045$ Smallest n is 17 OR $\left(\frac{5}{6}\right)^{n}<0.05$ and attempt to solve $n \ln \left(\frac{5}{6}\right)<\ln 0.05$ smallest n is 17	M1 A1 M1 A1	[2]	both No errors seen
3 (i)	$\begin{aligned} & (\lambda)=3.6 \div 3=1.2 \\ & 1-\mathrm{e}^{-1.2}\left(1+1.2+\frac{1.2^{2}}{2}+\frac{1.2^{3}}{3!}\right) \\ & =0.0338(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	1.2 seen Allow any λ As final answer
(ii)	$\begin{array}{ll} \mathrm{N}(60 \times 3.6,60 \times 3.6) \\ & \\ \frac{240.5-216^{\prime}}{\sqrt{\sqrt{216}}} \\ 1-\Phi(1.667 ’) & (=1.667) \\ =0.0478(3 \mathrm{sf}) & \end{array}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Stated or implied Allow with no or wrong cc (no sd/var mixes) Area consistent with their working SR use of Poisson 0.0497 scores 4/4
$4 \quad$ (i)	6080 (litres) 106 (litres)	$\begin{array}{\|l\|} \hline \\ \mathbf{B 1} \\ \text { B1 } \end{array}$	[2]	
(ii)	$\begin{array}{ll} \mathrm{E}(21 Y-2 X)=635 & \\ \operatorname{Var}(21 Y-2 X)= & \\ 21^{2} \times 12^{2}+2^{2} \times 53^{2} & \\ & (=74740) \\ \frac{0-635}{\sqrt{77470^{\prime}}} & (=-2.323) \\ 1-\Phi\left({ }^{(}-2.323^{\prime}\right)=\Phi\left({ }^{\prime} 2.323^{\prime}\right) \\ =0.99(0)(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1	[5]	correct expression or result or $\mathrm{sd}=273$ seen no sd/var mixes Area consistent with their working No errors seen
5 (a)	$\begin{aligned} & 63 \pm z \times \frac{9}{\sqrt{100}} \\ & z=1.645 \\ & 61.5 \text { to } 64.5(3 \mathrm{sf}) \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	B1 [3]	Expression of correct form, any z Seen Must be an interval

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	72

(b) (i)	$\begin{array}{ll} z=\frac{1.96}{2} & (=0.98) \\ \Phi(" 0.98 ") & (=0.8365) \\ " 0.8365 "-(1-" 0.8355 ") \\ \alpha=67.3(3 \text { sf }) & (=0.673) \end{array}$	M1 M1 A1	[3]	Allow $\frac{\text { any } z}{2}$ Allow 67 from correct working
(ii)	$\begin{aligned} & 4=\left(2 x^{\prime} z^{\prime} x^{\prime} \sigma^{\prime}\right) / \sqrt{n} \\ & n=200 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Attempt to solve equ of correct form SR B1 for $n=100$
6 (i)	$m_{X}, m_{Y}, m_{Z}, m_{W} \quad$ or X, Y, Z, W	B2	[2]	B1 if two adjacent means interchanged, i.e. $m_{Y}, m_{X}, m_{Z}, m_{W} \text { or } m_{X}, m_{Z}, m_{Y}, m_{W}$ or $m_{X}, m_{Y}, m_{W}, m_{Z}$ B1 for correct order reversed.
(ii) (a)	$\begin{aligned} & \int_{0}^{3} \frac{4}{81} x^{4} \mathrm{~d} x \\ & =\left[\frac{4}{81} \frac{x^{5}}{5}\right]_{0}^{3} \\ & =\frac{4}{81} \times \frac{3^{5}}{5} \text { or } \frac{4}{81} \times \frac{243}{5} \text { or } \frac{972}{405} \text { oe } \\ & =\frac{12}{5} \text { or } 2.4 \end{aligned}$	M1 A1 A1	[3]	Attempt int $x \mathrm{f}(x)$. Ignore limits Correct integration and limits (condone missing 4/81) Must see correct expression as well as $\frac{12}{5}$ or 2.4 No errors seen
(b)	$\left.\begin{array}{l} \int_{2.4}^{3} \frac{4}{81} x^{3} \mathrm{~d} x \end{array} \quad \text { or } 1-\int_{0}^{2.4} \frac{4}{81} x^{3} \mathrm{~d} x\right] .$	M1 A1 A1	[3]	Attempt int $\mathrm{f}(x)$ ignore limits Correct integration and limits (condone missing 4/81) As final answer
(c)	1	B1	[1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	72

$7 \quad$ (i)	H_{0} : Pop mean time $($ or $\mu)=20.5$ H_{1} : Pop mean time ((μ) <20.5 $\frac{20.3-20.5}{1.2 \sqrt{100}}$ $=-1.667$ or $0.0478 / 0.952$ if areas compared $' 1.667 \prime>1.751$ $\left(\text { or }{ }^{‘}-1.667^{\prime}>-1.751\right)$ No evidence that (pop) mean time has decreased	B1 M1 A1 M1 A1ft	[5]	Not just "mean" Allow without $\sqrt{ }$ sign (accept $\pm 1.667 / 1.67$) Correct comparison of their $z_{\text {calc }}$ with 1.751/1.75 oe valid comparison of areas ($0.0478>0.04$) No contradictions (ft their z)	
(ii)	$\begin{aligned} & \frac{c v-20.5}{1.2 \sqrt{100}}=-1.751 \\ & \mathrm{cv}=20.29 \text { or } 20.3 \\ & \frac{20.29^{\prime}-2.1}{1.2+\sqrt{100}} \quad(=1.583 \text { or } 1.582) \\ & 1-\Phi\left({ }^{\prime} 1.583^{\prime}\right) \\ & =0.0567-0.0569(3 \mathrm{sf}) \end{aligned}$	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]	$\begin{aligned} & \text { Allow } \frac{20.3-20.1}{1.2 \div \sqrt{100}}(=1.667) \\ & 1-\Phi\left(‘^{\prime} 1.667 ’\right) \\ & =0.0478(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1
(iii)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe	

