Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	71

1	$\left(\frac{508}{8}\right) = 63.5$ $(\Sigma x^2 = 32360.12)$	B1		
	$\frac{8}{7} \left(\frac{32360.12}{8} - 63.5^{2} \right)$	M1		oe
	= 14.6 (3 sf) or 2553/175	A1	[3]	From correct working
2 (i)	H_0 : $P(6) = {}^{1}/_{6}$ H_1 : $P(6) < {}^{1}/_{6}$	B1	[1]	Allow H ₀ : $p = {}^{1}/_{6}$ H ₁ : $p < {}^{1}/_{6}$
(ii)	$\left(\frac{5}{6}\right)^{15} = 0.065 > 0.05$	M1 A1	[2]	Correct result and comparison needed for A1 SR if 2 tail test followed allow A1 for $0.065 > 0.025$
(iii)	$\left(\frac{5}{6}\right)^{16} = 0.054 \text{ and } \left(\frac{5}{6}\right)^{17} = 0.045$	M1		both
	Smallest <i>n</i> is 17	A1	[2]	No errors seen
	OR $\left(\frac{5}{6}\right)^n < 0.05$ and attempt to solve $n\ln\left(\frac{5}{6}\right) < \ln 0.05$	M1		
	smallest n is 17	A1		
3 (i)	$(\lambda) = 3.6 \div 3 = 1.2$ $1 - e^{-1.2} \left(1 + 1.2 + \frac{1.2^2}{2} + \frac{1.2^3}{3!} \right)$	B1 M1	503	1.2 seen Allow any λ
	= 0.0338 (3 sf)	A1	[3]	As final answer
(ii)	$N(60 \times 3.6, 60 \times 3.6)$	M1		Stated or implied
	$\frac{240.5-'216'}{\sqrt{216'}} $ (= 1.667) 1- Φ ('1.667') = 0.0478 (3 sf)	M1 M1 A1	[4]	Allow with no or wrong cc (no sd/var mixes) Area consistent with their working SR use of Poisson 0.0497 scores 4/4
4 (i)	6080 (litres) 106 (litres)	B1 B1	[2]	
(ii)	$E(21Y-2X) = 635$ $Var(21Y-2X) = 21^{2} \times 12^{2} + 2^{2} \times 53^{2}$	B1 B1		correct expression or result or sd = 273 seen
	$ \begin{array}{c} (=74740) \\ \frac{0-635}{\sqrt{74740'}} \\ (=-2.323) \end{array} $	M1		no sd/var mixes
	$1-\Phi('-2.323') = \Phi('2.323')$ = 0.99(0) (3 sf)	M1 A1	[5]	Area consistent with their working No errors seen
5 (a)	$63 \pm z \times \frac{9}{\sqrt{100}}$ z = 1.645 61.5 to 64.5 (3 sf)	M1 B1 A1	B1 [3]	Expression of correct form, any z Seen Must be an interval

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	71

(b) (i)	$z = \frac{1.96}{2} \qquad (= 0.98)$ $\Phi("0.98") \qquad (= 0.8365)$ $"0.8365" - (1 - "0.8365")$ $(= 0.673)$ $\alpha = 67.3 (3 sf)$	M1 M1 A1	[3]	Allow $\frac{\text{any }z}{2}$ Allow 67 from correct working
(ii)	$4=(2x'z'x'\sigma')/\sqrt{n}$ $n=200$	M1 A1	[2]	Attempt to solve equ of correct form SR B1 for $n = 100$
6 (i)	m_X , m_Y , m_Z , m_W or X , Y , Z , W	B2	[2]	B1 if two adjacent means interchanged, i.e. m_Y , m_X , m_Z , m_W or m_X , m_Z , m_Y , m_W or m_X , m_Y , m_W , m_Z B1 for correct order reversed.
(ii) (a)	$\int_{0}^{3} \frac{4}{81} x^4 \mathrm{d}x$	M1		Attempt int $xf(x)$. Ignore limits
	$\int_{0}^{\frac{4}{81}} x^{4} dx$ $= \left[\frac{4}{81} \frac{x^{5}}{5} \right]_{0}^{3}$	A1		Correct integration and limits (condone missing 4/81)
	$= \frac{4}{81} \times \frac{3^5}{5} \text{ or } \frac{4}{81} \times \frac{243}{5} \text{ or } \frac{972}{405} \text{ oe}$			Must see correct expression as well as $\frac{12}{5}$ or 2.4
	$=\frac{12}{5}$ or 2.4 AG	A1	[3]	No errors seen
(b)	$\int_{2.4}^{3} \frac{4}{81} x^3 dx \qquad \text{or } 1 - \int_{0}^{2.4} \frac{4}{81} x^3 dx$	M1		Attempt int $f(x)$ ignore limits
	$= \left[\frac{\frac{4}{81} \frac{x^4}{4}}{\frac{1}{2}}\right]_{2.4}^{3} \text{or } 1 - \left[\frac{\frac{4}{81} \frac{x^4}{4}}{\frac{1}{4}}\right]_{0}^{2.4}$	A1		Correct integration and limits (condone missing 4/81)
	$=1-\frac{4}{81}\times\frac{2.4^4}{4}$ oe			
	$=\frac{369}{625}$ or 0.59(0) (3 sf)	A1	[3]	As final answer
(c)	1	B1	[1]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	71

7 (i	i)	H ₀ : Pop mean time (or μ) = 20.5 H ₁ : Pop mean time (or μ) < 20.5 $\frac{20.3-20.5}{1.2+\sqrt{100}}$ = -1.667 or 0.0478/0.952 if areas compared	B1 M1 A1		Not just "mean" Allow without √ sign (accept ±1.667/1.67)
		'1.667' < 1.751 (or '-1.667' > -1.751) No evidence that (pop) mean time has decreased	M1 A1ft	[5]	Correct comparison of their $z_{\rm calc}$ with 1.751/1.75 oe valid comparison of areas (0.0478 > 0.04) No contradictions (ft their z)
(ii	i)	$\frac{cv-20.5}{1.2 \div \sqrt{100}} = -1.751$ $cv = 20.29 \text{ or } 20.3$ $\frac{'20.29'-20.1}{1.2 \div \sqrt{100}} \qquad (= 1.583 \text{ or } 1.582)$ $1 - \Phi('1.583')$ $= 0.0567 - 0.0569 \text{ (3 sf)}$	M1* A1 DM1 M1 A1	[5]	Allow $\frac{20.3-20.1}{1.2 \div \sqrt{100}}$ (= 1.667) M1 $1 - \Phi('1.667')$ M1 = 0.0478 (3 sf) A1
(iii	i)	Concluding (mean) time not decreased when in fact it has.	B1	[1]	Must be in context oe