Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	63

1	total ways ${ }^{10} \mathrm{C}_{5}=252$ MW together e.g. (MW)*** in ${ }^{8} \mathrm{C}_{3}$ ways $=56$ MW not together $=252-56$ = 196 ways OR 1 $2{ }^{8} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{5}$ $2{ }^{8} \mathrm{C}_{4}=2 \times 70=140 ;{ }^{8} \mathrm{C}_{5}=56$ $2{ }^{8} \mathrm{C}_{4}+{ }^{8} \mathrm{C}_{5}=196$ OR 2 $\begin{aligned} & 2{ }^{9} \mathrm{C}_{5}-{ }^{8} \mathrm{C}_{5} \\ & 2{ }^{9} \mathrm{C}_{5}=2 \times 126=252 ;{ }^{8} \mathrm{C}_{5}=56 \\ & 2{ }^{9} \mathrm{C}_{5}-{ }^{8} \mathrm{C}_{5}=196 \end{aligned}$	$\begin{array}{\|l} \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { M1 } \\ \text { B1 } \\ \text { A1 } \\ \text { M1 } \\ \text { B1 } \\ \text { A1 } \end{array}$	[3]	${ }^{10} \mathrm{C}_{5}-\ldots$ or $252-\ldots$ 252 and 56 seen, may be unsimplified $2{ }^{n} \mathrm{C}_{4}+{ }^{n} \mathrm{C}_{5}$ 140 and 56 seen may be unsimplified $2{ }^{9} \mathrm{C}_{5}-. .$ 252 and 56 seen, may be unsimplified
2 (i)	$\begin{aligned} & p=1 / 3 \\ & \mathrm{P}(\geqslant 2)=1-\mathrm{P}(0,1)=1-(2 / 3)^{4}-{ }^{4} \mathrm{C}_{1}(1 / 3)(2 / 3)^{3} \\ & \text { or } \mathrm{P}(2,3,4)==^{4} \mathrm{C}_{2}(1 / 3)^{2}(2 / 3)^{2}+{ }^{4} \mathrm{C}_{3}(1 / 3)^{3}(2 / 3)+(1 / 3)^{4} \\ & =\frac{11}{27}, 0.407 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { M1 } \\ \hline \text { A1 } \end{array}$	[3]	Bin term ${ }^{4} \mathrm{C}_{x} p^{x}(1-p)^{4-x} \quad 0<p<1$ Correct unsimplified answer
(ii)	$\begin{aligned} & \mathrm{P}(\text { sum is } 5)=\mathrm{P}(1,1,1,2) \times 4=(1 / 3)^{4} \times 4 \\ & =\frac{4}{81}, 0.0494 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	$1,1,1,2$ seen or 4 options Mult by $(1 / 3)^{4}$
3 (i)	$\begin{aligned} & \text { e.g. }{ }^{*}{ }^{4} \text { in }{ }^{3} \mathrm{P}_{2} \text { ways }=6 \\ & * * 7 \text { in }{ }^{3} \mathrm{P}_{2}=6 \\ & \text { Total } 12 \\ & \text { OR listing } 457,547,467,647,567,657,475,745 \\ & 465,645,675,765 \\ & \text { Total } 12 \end{aligned}$	M1 M1 A1 M1 M1 A1	[3]	Recognising ends in 5 or 7, can be implied Summing ends in $5+$ ends in 7 oe Correct answer following legit working Listing at least 5 different numbers ending in 5 Listing at least 5 different numbers ending in 7
(ii)	1 digit in 2 ways 2 digits in $* 5$ or $* 7={ }^{3} \mathrm{P}_{1} \times 2=6$ 4 digits in $* * * 5$ or $* * * 7={ }^{3} \mathrm{P}_{3} \times 2=12$ Total ways $=32$	M1 A1 A1	[3]	Consider at least 3 options with different number of digits. If no working, must be 3 or 4 from 2, 6, 12, 12 One option correct from 1, 2 or 4 digits
4 (i)	64/250, 0.256	B1	[1]	oe
(ii)	190/250, 0.76 (0)	B1	[1]	oe

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	63

(iii)	$\begin{aligned} & \mathrm{P}(X)=80 / 250=8 / 25 \\ & \mathrm{P}(Y)=100 / 250=2 / 5 \\ & \mathrm{P}(X \cap Y)=32 / 250=16 / 125 \\ & \mathrm{P}(X) \times \mathrm{P}(Y)=\frac{8}{25} \times \frac{2}{5}=\frac{16}{125} \end{aligned}$ Since $\mathrm{P}(X) \times \mathrm{P}(Y)=\mathrm{P}(X \cap Y)$ therefore independent	M1 M1 B1 M1 A1	[5]	attempt at $\mathrm{P}(X)$ attempt at $\mathrm{P}(Y)$ oe comparing $\mathrm{P}(X) \times \mathrm{P}(Y)$ and $\mathrm{P}(X \cap Y)$ so long as independence has not been assumed correct answer with all working correct
5 (i)		B1 B1 B1 B1	[4]	Horizontal axis from min of 140 to 190 and vertical axis from 0 to minimum of 60 and two CF graphs on the same set of axes. Labels: CF; height (ht) in cm; girls; boys in correct places CF graph going through $(150,0),(160,20)$, $(170,43),(180,55)$ and $(190,60)$ CF graph going through $(140,0),(150,12)$, $(160,33),(170,50),(180,60)$ [and $(190,60)]$
(ii)	$42(\pm 1)$ shorter than 165 . $\begin{aligned} & (18(\pm 1)) / 60 \times 100 \\ & =30 \%(\pm 1.7 \%) \end{aligned}$	$\begin{array}{\|l} \hline \text { M1 } \\ \\ \text { M1 } \\ \text { A1 } \end{array}$	[3]	Line or reading from 165 on their cf graph oe subtracting from 60
(iii)	can see which is taller, see which of boys or girls is more spread out	B1	[1]	any sensible comment in context
6 (i)	$\begin{aligned} & \mathrm{P}(\text { small })=\mathrm{P}\left(z<\frac{95-150}{50}\right) \\ & =\mathrm{P}(z<-1.1) \\ & =1-0.8643 \\ & =0.136 \end{aligned}$	M1 M1 A1	[3]	\pm standardising using 95 , no cc, no sq, no sq rt $1-\Phi($ in final answer)
(ii)	$\begin{aligned} & z=1.282 \\ & 1.282=\frac{x-150}{50} \\ & x=214 \mathrm{~g} \end{aligned}$	B1 M1 A1	[3]	\pm rounding to 1.28 Standardised eqn in their z allow cc
(iii)	$\begin{aligned} & \mathrm{P}(\text { small })=0.1357, \quad \mathrm{P}(\text { large })=0.1357 \text { symmetry } \\ & \mathrm{P}(\text { medium })=1-0.1357 \times 2=0.7286 \mathbf{A G} \end{aligned}$	B1	[1]	Correct answer legit obtained
(b)	Expected cost per banana $=0.1357 \times 10+$ $0.1357 \times 25+0.7286 \times 20=19.3215$ cents Total cost of 100 bananas $=1930$ (cents) (\$19.30)	$\begin{aligned} & \text { *M1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[3]	Attempt at multiplying each 'prob' by a price and summing Mult by 100

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	63

$7 \quad$ (i)	$\begin{aligned} & \mathrm{P}(2)={ }^{7} \mathrm{C}_{2}(0.1)^{2}(0.9)^{5} \\ & =0.124 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Bin term ${ }^{7} \mathrm{C}_{2} p^{2}(1-p)^{5} \quad 0<p<1$
(ii)	$(0.15)^{1}(0.1)^{2}(0.75)^{2} \times 5!/ 2!2!$ $=0.0253 \text { or } 81 / 3200$	M1 M1 A1	[3]	Mult probs for options, $(0.15)^{\mathrm{a}}(0.1)^{\mathrm{b}}(0.75)^{\mathrm{c}}$ where $\mathrm{a}+\mathrm{b}+\mathrm{c}$ sum to 5 Mult by $5!/ 2!2$! oe
(iii)	$\begin{aligned} & \text { mean }=365 \times 0.15(=54.75 \text { or } 219 / 4) \\ & \text { Var }=365 \times 0.15 \times 0.85(=46.5375 \text { or } 3723 / 80) \\ & \mathrm{P}(x>44)=\mathrm{P}\left(z>\frac{44.5-54.75}{\sqrt{46.5375}}\right) \\ & =\mathrm{P}(z>-1.5025) \\ & =0.933 \end{aligned}$	B1 M1 M1 M1 A1	[5]	Correct unsimplified mean and var, oe \pm Standardising need sq it cc either 44.5 (or 43.5) Φ Correct answer accept 0.934

