Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	62

1	$\begin{aligned} & \mathrm{P}(\mathrm{C} \text { given } \mathrm{L})=\frac{P(C \cap L)}{P(L)} \\ & \quad=\frac{0.65 \times 0.1}{0.65 \times 0.1+0.3 \times 0.15+0.05 \times 0.6} \\ & \quad=\frac{0.065}{0.14} \\ & \quad=0.464, \frac{13}{28} \end{aligned}$	M1 A1 M1 A1 A1	[5]	$\mathrm{P}(C \cap L)$ seen as num or denom of a fraction Correct unsimplified $\mathrm{P}(C \cap L)$ as numerator Summing three 2 -factor products seen anywhere 0.14 (unsimplified) seen as num or denom of a fraction oe
2 (i)	$\begin{align*} & \mathrm{P}(1 \text { T-shirt })=\frac{{ }^{3} C_{1} \times{ }^{9} C_{2}}{{ }^{12} C_{3}} \\ & \quad=27 / 55 \tag{AG} \end{align*}$ OR $3 / 12 \times 9 / 11 \times 8 / 10 \times{ }^{3} \mathrm{C}_{1} \mathrm{oe}$ $=27 / 55$	B1 B1 B1 M1 M1 A1	[3]	Correct num unsimplified Correct denom unsimplified Answer given, so process needs to be convincing Mult 3 probs diff denoms (not $\mathrm{a} / 3 \mathrm{xb} / 4 \mathrm{xc} / 5$) Mult by ${ }^{3} \mathrm{C}_{1}$ oe Answer given, so process needs to be convincing
(ii)	X 0 1 2 3 Prob $84 / 220$ $27 / 55$ $27 / 220$ $1 / 220$	B1 B1 B1 B1 \downarrow	[4]	$0,1,2,3$ only seen in top line (condone additional values if Prob stated as 0) One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p=1,4$ values in table
3 (i)	$\begin{aligned} & \operatorname{Bin}(7,0.8) \\ & \mathrm{P}(6,7)={ }^{7} \mathrm{C}_{6}(0.8)^{6}(0.2)^{1}+(0.8)^{7} \\ & =0.577 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	${ }^{7} C_{n} \mathrm{p}^{\mathrm{n}}(1-p)^{7-\mathrm{n}} \text { seen }$ Correct unsimplified expression for $\mathrm{P}(6,7)$
(ii)	$\begin{aligned} & \text { mean }=100 \times 0.2=20 \\ & \text { Var }=100 \times 0.2 \times 0.8=16 \\ & \mathrm{P}(\text { at most } 30)=P\left(z<\frac{30.5-20}{\sqrt{16}}\right) \\ & =\mathrm{P}(z<2.625) \\ & =0.996 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \\ & \text { A1 } \end{aligned}$	[5]	Correct unsimplified mean and var Standardising must have sq rt, their μ, variance cc either 29.5 or 30.5 Correct area Φ, from final process
4 (i)	$\begin{aligned} & \mathrm{P}(<4.5)=\mathrm{P}\left(z<\frac{4.5-4.2}{0.6}\right)=\mathrm{P}(z<0.5) \\ & =0.6915 \\ & \mathrm{P}(<3.5)=\mathrm{P}\left(z<\frac{3.5-4.2}{0.6}\right)=\mathrm{P}(z<-1.167) \\ & \quad=1-0.8784=0.1216 \\ & 0.6915-0.1216=0.570 \end{aligned}$	M1 M1 A1	[3]	Standardising once no cc no sq no sq rt $\Phi_{1}-\left(1-\Phi_{2}\right)\left[\mathrm{P}_{1}-\mathrm{P}_{2}, 1>\mathrm{P}_{1}>0.5,0.5>\mathrm{P}_{2}>0\right] \text { oe }$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	62

(ii)	$\begin{aligned} & z=1.175 \\ & 1.175=\frac{t-4.2}{0.6} \\ & t=4.91 \end{aligned}$	B1 M1 A1	[3]	± 1.17 to 1.18 seen Standardising no cc , allow sq , sq rt with z - value (not $\pm 0.8106,0.5478,0.4522,0.1894,0.175$ etc.) Correct answer from $z=1.175$ seen (4sf)
(iii)	$(0.88)^{\mathrm{n}}<0.003$ $n>\lg (0.003) / \lg (0.88)$ $n>45.4$ $n=46$	M1 M1 A1	[3]	Inequality or eqn in 0.88 , power correctly placed using n or ($n \pm 1$), 0.003 or ($1-0.003$) oe Attempt to solve by logs or trial and error (may be implied by answer) Correct integer answer
5 (i)	cw $5,5,10,20,40$ fd $8,6,1.8,1.7,0.2$	M1 M1 A1 B1 B1	[5]	cw either 4 or 5 etc fd or scaled freq [$\mathrm{f} /$ /heir cw attempt] fd may be $\div 1000$ Correct heights seen accurately on diagram Correct bar ends, accurately plotted on axis Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0
(ii)	$\begin{aligned} & (5 \times 40+10 \times 30+17.5 \times 18+32.5 \times 34+62.5 \times 8) / 130 \\ & =2420 / 130=18.6 \text { thousand } \end{aligned}$	M1 A1	[2]	$\Sigma \mathrm{f} x / 130$ where x is mid point attempt (value within class, not end pt or cw)
(iii)	median group $=8-12$ thousand LQ group $=3-7$ thousand	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	[2]	Thousands not needed

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	62

6 (i)	e.g. (OAEE)(CPNHGN) or cv $\frac{4!}{2!} \times \frac{6!}{2!} \times 2=8640$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	$4!/ 2$! or $6!/ 2$! seen anywhere All multiplied by 2 oe
(ii)	First Method Total ways $=10!/ 2!2!=907200$ EE together in $9!/ 2!$ ways $=181440$ EE not together $=907200-181440$ $=725760$ OR Second Method $C_{4}{ }_{4}$ N H G N O A in $8!/ 2$! ways Insert E in 9 ways Insert 2 nd E in 8 ways, $\div 2$ Total $=8!/ 2!\times 9 \times 8 \div 2=725760$	B1 M1 M1 A1 B1 M1 M1 A1	[4]	Total ways together correct EE together attempt alone Considering total - EE together 8!/2! Seen Interspersing an $\mathrm{E}, \mathrm{x} \mathrm{n}$ where $\mathrm{n}=7,8,9$. Condone additional factors. Mult by $9 \times 8(\div 2),{ }^{9} \mathrm{C}_{2}$ or ${ }^{9} \mathrm{P}_{2}$ only oe
(iii)	First Method EN** in ${ }^{6} \mathrm{C}_{2}$ ways $=15 \text { different ways }$ EENN in 1 way Total 16 ways OR Second Method Listing with at least 8 different correct options Listing all correct options Total $=15$ different ways EENN in 1 way Total 16 ways	M1 M1 A1 B1 A1 M1 M1 A1 B1 A1	[5]	${ }^{6} \mathrm{C}_{\mathrm{x}}$ or ${ }^{\mathrm{y}} \mathrm{C}_{2}$ seen alone or mult by $k>1, \mathrm{x}<6, \mathrm{y}>2$ $(1 \mathrm{x} 1 \mathrm{x}){ }^{6} \mathrm{C}_{2}$ seen strictly alone or added to their EENN only Value stated or implied by final answer correct value stated Award 16 SRB2 if no method is present

