i ugc +	
Page 4	

Mark Scheme Cambridge International AS/A Level – October/November 2016

SyllabusPaper970962

1	$P(C \text{ given } L) = \frac{P(C \cap L)}{P(L)}$	M1		$P(C \cap L)$ seen as num or denom of a fraction			
	$=\frac{0.65\times0.1}{0.65\times0.1+0.3\times0.15+0.05\times0.6}$	A1		Correct unsimplified $P(C \cap L)$ as numerator			
	$=\frac{0.065}{0.065}$	M1		Summing three 2-factor products seen anywhere			
	0.14	A1		0.14 (unsimplified) seen as num or denom of a fraction			
	$= 0.464, \frac{13}{28}$	A1	[5]	oe			
2 (i)	P(1 T-shirt) = $\frac{{}^{3}C_{1} \times {}^{9}C_{2}}{{}^{12}C}$	B1 B1		Correct num unsimplified			
	= 27/55 AG	B1	[3]	Answer given, so process needs to be convincing			
	OR $3/12 \times 9/11 \times 8/10 \times {}^{3}C_{1}$ oe = 27/55 AG	M1 M1 A1		Mult 3 probs diff denoms (not a/3 x b/4 x c/5) Mult by ${}^{3}C_{1}$ oe Answer given, so process needs to be convincing			
(ii)	X 0 1 2 3 Prob $84/220$ $27/55$ $27/220$ $1/220$	B1		0, 1, 2, 3 only seen in top line (condone additional values if Prob stated as 0)			
		B1 B1 B1√	[4]	One correct prob, correctly placed in table One other correct prob, correctly placed in table One other correct prob ft $\Sigma p = 1$, 4 values in table			
3 (i)	Bin (7, 0.8) P(6, 7) = ${}^{7}C_{6} (0.8)^{6} (0.2)^{1} + (0.8)^{7}$ = 0.577	M1 M1 A1	[3]	${}^{7}C_{n} p^{n} (1-p)^{7-n}$ seen Correct unsimplified expression for P(6,7)			
(ii)	mean = $100 \times 0.2 = 20$ Var = $100 \times 0.2 \times 0.8 = 16$	B1		Correct unsimplified mean and var			
	P(at most 30) = $P\left(z < \frac{30.5 - 20}{\sqrt{16}}\right)$	M1 M1 M1		Standardising must have sq rt, their μ , variance cc either 29.5 or 30.5 Correct area Φ , from final process			
	= P(z < 2.625) = 0.996	A1	[5]				
4 (i)	P(< 4.5) = P $\left(z < \frac{4.5 - 4.2}{0.6}\right)$ = P(z < 0.5)	M1		Standardising once no cc no sq no sq rt			
	$ = 0.6915 P(<3.5) = P\left(z < \frac{3.5 - 4.2}{0.6}\right) = P(z < -1.167) $						
	= 1 - 0.8784 = 0.1216	M1		$\Phi_1 - (1 - \Phi_2) [P_1 - P_2, 1 \ge P_1 \ge 0.5, 0.5 \ge P_2 \ge 0]$ oe			
	0.6915 - 0.1216 = 0.570	A1	[3]				

Pa	ige 5 Mark Scher	ne L – Oct	oho	Syllabus Paper			
(ii)	$z = 1.175$ $1.175 = \frac{t - 4.2}{0.6}$	B1 M1		± 1.17 to 1.18 seen Standardising no cc, allow sq, sq rt with <i>z</i> – value (not ± 0.8106 , 0.5478, 0.4522, 0.1894, 0.175 etc.)			
	<i>t</i> = 4.91	A1	[3]	Correct answer from $z = 1.175$ seen (4sf)			
(iii)	$(0.88)^{n} < 0.003$	M1		Inequality or eqn in 0.88, power correctly placed using <i>n</i> or $(n\pm 1)$, 0.003 or $(1 - 0.003)$ oe			
	$n > \lg (0.003)/\lg (0.88)$ n > 45.4 n = 46	M1 A1	[3]	Attempt to solve by logs or trial and error (may be implied by answer) Correct integer answer			
5 (i)	cw 5, 5, 10, 20, 40 fd 8, 6, 1.8, 1.7, 0.2 fd▲ 8_	M1 M1		cw either 4 or 5 etc fd or scaled freq [f/their cw attempt] fd may be ÷ 1000			
		A1		Correct heights seen accurately on diagram			
	2	B1		Correct bar ends, accurately plotted on axis			
	0 10 20 30 40 50 60 70 80 90 Capacity (1000s)	B1	[5]	Labels fd and capacity (thousands) Correct horizontal scale required. Vertical scale linear from 0			
(ii)	(5×40+10×30+17.5×18+32.5×34+62.5×8)/130			$\Sigma f x/130$ where x is mid point attempt (value within class, not end pt or cw)			
	= 2420/130 = 18.6 thousand	A1	[2]				
(iii)	median group = $8 - 12$ thousand LQ group = $3 - 7$ thousand		[2]	Thousands not needed			

	Page	e 6	Mark Scheme				Syllabus	Paper	
	Cambridge International AS/A Level – October/November 2016					/November 2016	9709	62	
6	(i) e. $\frac{4}{2}$.g. (0) $\frac{4!}{2!} \times \frac{6}{2}$	DAEE)(CPNHGN) or cv $\frac{1}{2} \times 2 = 8640$	M1 M1 A1	[3]	4!/2! or 6!/2! seen anywhere All multiplied by 2 oe			
(1	ii) F O S	First N To EE EE = 72 DR econ	Method tal ways = 10!/2!2! = 907200 together in 9!/2! ways = 181440 not together = 907200 - 181440 25760 d Method C.P. N. H. G. N. O. A. in 8!/2! ways	B1 M1 M1 A1 B1	[4]	Total ways together EE together attempt Considering total – 1 8!/2! Seen	correct alone EE together		
	Ir Ir T	nsert nsert 'otal	E in 9 ways 2nd E in 8 ways, $\div 2$ = 8!/2!×9×8 $\div 2$ = 725760	M1 M1 A1		Interspersing an E, x additional factors. Mult by 9×8(÷2), ⁹ C	x n where n= C_2 or 9P_2 only	7,8,9. Condo oe	one
(ii	ii) F E O S L L T E T	= 1. EEN Tota DR Cotal	Method f in ⁶ C ₂ ways 5 different ways IN in 1 way 1 16 ways d Method g with at least 8 different correct options g all correct options = 15 different ways I in 1 way 16 ways	M1 M1 A1 B1 A1 M1 M1 A1 B1 A1	[5]	${}^{6}C_{x}$ or ${}^{y}C_{2}$ seen alone (1x1x) ${}^{6}C_{2}$ seen strice EENN only Value stated or impliced correct value stated Award 16 SRB2 if r	C ₂ seen alone or mult by $k > 1$, x<6, y>2 ⁶ C ₂ seen strictly alone or added to their only stated or implied by final answer value stated 16 SRB2 if no method is present		