Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	61

1	$\begin{aligned} & z=0.674 \\ & 0.674=\frac{k-20}{7} \\ & k=24.7 \end{aligned}$							M1 M1 A1	[3]	$\pm 0.674 \text { seen }$ Standardising no cc, no sq, no sq rt
2	$\begin{aligned} \text { Expectation } & =(0+10+16+18+16+10) / 36 \\ & =70 / 36 \\ & =1.94 \end{aligned}$							B1 M1 A1 M1 A1	[5]	$0,1,2,3,4,5$ seen in table heading or considering all different differences Attempt at finding prob of any difference 1 correct prob Probs summing to 1
3 (i)	$0.9 \times 0.95 \times 0.85 \times 0.1=0.0727$							B1	[1]	
(ii)	$\begin{aligned} & \mathrm{P}(0,1,2) \\ & =(0.9)^{12}+{ }^{12} \mathrm{C}_{1}(0.1)(0.9)^{11}+{ }^{12} \mathrm{C}_{2}(0.1)^{2}(0.9)^{10} \\ & =0.889 \end{aligned}$							M1 M1 A1	[3]	$\begin{aligned} & \text { Bin term }{ }^{12} \mathrm{C}_{x}(p)^{x}(1-p)^{12-x} p \\ & <1, x \neq 0 \\ & \text { Bin expression } p=0.1 \text { or } 0.9, n \\ & =12,2 \text { or } 3 \text { terms } \end{aligned}$
(iii)	$\begin{aligned} & X \sim \mathrm{~B}(50,0.85) \\ & \text { Expectation }=50 \times 0.85(=42.5) \\ & \operatorname{Var}=50 \times 0.85 \times 0.15(=6.375) \end{aligned}$							M1 A1	[2]	50×0.85 seen oe can be implied Correct unsimplified mean and var
4 (i)	$\begin{aligned} \mathrm{P}(<1) & =\mathrm{P}\left(z<\frac{1-1.04}{0.017}\right)=\mathrm{P}(\mathrm{z}<-2.353) \\ & =1-0.9907 \\ & =0.0093 \end{aligned}$							M1 M1 A1	[3]	Standardising no cc , no $\sqrt{ }$ or sq $1-\Phi$ (final process)
(ii)	expected number $1000 \div 1.04=961$ or 962							B1	[1]	Or anything in between
(iii)	$\begin{aligned} & z=-1.765 \\ & -1.765=\frac{1-\mu}{0.017} \\ & \\ & =1.03 \end{aligned}$							B1 M1 A1	[3]	$\pm 1.76 \text { to } 1.77$ Standardising must have a zvalue, allow $\sqrt{ }$ or sq
(iv)	expected number $=1000 \div 1.03=971$ or 970							B1 §	[1]	Or anything in between, ft their (iii)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	61

5 (a)	$\begin{aligned} & \text { e.g. } \mathrm{P} * \mathrm{~N} * \mathrm{P} * \mathrm{P} * \mathrm{~L} \\ & =\frac{5!}{3!} \times \frac{{ }^{6} P_{4}}{2!} \\ & =3600 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	Mult by 5 ! in num Dividing by 3 ! or 2 ! Mult by ${ }^{6} \mathrm{P}_{4}$ oe
(b) (i)	$\begin{aligned} & { }^{7} \mathrm{C}_{5} \times{ }^{5} \mathrm{C}_{4} \times{ }^{2} \mathrm{C}_{1} \times{ }^{2} \mathrm{C}_{1} \\ & =420 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Mult 4 combs of which three are correct
(ii)	both in team $\begin{aligned} & { }^{6} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{3} \times 2 \times 2=240 \\ & 420-240=180 \text { ways } \end{aligned}$ OR Bat in bowl out + bowl in bat out + both out $\begin{aligned} & ={ }^{6} \mathrm{C}_{4} \times{ }^{4} \mathrm{C}_{3} \times 2 \times 2+{ }^{6} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{3} \times 2 \times 2+{ }^{6} \mathrm{C}_{5} \times{ }^{4} \mathrm{C}_{4} \times 2 \times 2 \\ & =60+96+24=180 \text { ways } \end{aligned}$ OR Bat in bowl out + bat out $=60+{ }^{6} \mathrm{C}_{5} \times{ }^{5} \mathrm{C}_{4} \times 2 \times 2=60+120=180 \text { ways }$	M1 M1 A1 M1 A1 A1 M1 A1 A1	[3]	Evaluating both in team and subtracting from (i) 240 seen can be unsimplified ft their 420 , their 240 summing 2 or 3 options not both in team 2 or 3 options correct unsimplified Correct ans from correct working As above, or bowl in bat out + bowl out
6 (i)	$\begin{aligned} & \mathrm{P}(\mathrm{~B}, \mathrm{~B})=1 / 4 \times 2 / 5 \\ & =1 / 10 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Multiplying two different probs
(ii)	$\begin{aligned} & \mathrm{P}(X=1)=\mathrm{P}(\mathrm{R}, \mathrm{R})+\mathrm{P}(\mathrm{~B}, \mathrm{~B}) \\ & =3 / 4 \times 4 / 5+1 / 10 \\ & =14 / 20(7 / 10) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]	Finding $\mathrm{P}(\mathrm{R}, \mathrm{R})(=3 / 5)$ Summing two options
(iii)	$\mathrm{P}(\mathrm{~B} \quad \mathrm{~B})$ $=\frac{P(B \cap B)}{P(B)}=\frac{1 / 10}{3 / 4 \times 1 / 5+1 / 4 \times 2 / 5}$ $=2 / 5$	M1 M1 A1 A1	[4]	their (i) seen as num or denom of a fraction $3 / 4 \times p_{1}+1 / 4 \times p_{2}$ seen anywhere $1 / 4$ (unsimplified) seen as num or denom of a fraction, www

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	61

