Page 4	Mark Scheme	Syllabus Paper					
	Cambridge International AS/A Level – Octob	2016 9709 61					
1	z = 0.674	M1		10 674 coop			
1				± 0.674 seen			
	$0.674 = \frac{k - 20}{7}$	M1		Standardising no cc, no sq, no sq rt			
	<i>k</i> = 24.7	[3]	1				
2	diff 0 1 2 3 4 5	B1		0, 1, 2, 3, 4, 5 seen in table			
-	prob 6/36 10/36 8/36 6/36 4/36 2/36	DI		heading or considering all			
	prod 0,50 10,50 0,50 0,50 1,50 2,50	M1		different differences Attempt at finding prob of any			
				difference 1 correct prob Probs summing to 1			
	Expectation = $(0+10+16+18+16+10)/36$	A1 M1					
	= 70/36	.1	[7]				
	= 1.94	A1	[5]				
3 (i)	$0.9 \times 0.95 \times 0.85 \times 0.1 = 0.0727$	B1	[1]				
(ii)	P(0, 1, 2)	M1		Bin term ${}^{12}C_x(p)^x(1-p)^{12-x} p$			
	$= (0.9)^{12} + {}^{12}C_1 (0.1)(0.9)^{11} + {}^{12}C_2 (0.1)^2 (0.9)^{10}$	M1		< 1, $x \neq 0$ Bin expression $p = 0.1$ or 0.9, n			
			[0]	= 12, 2 or 3 terms			
	= 0.889	A1	[3]				
(iii)	$X \sim B(50, 0.85)$ M1			50×0.85 seen oe can be			
	Expectation = 50×0.85 (= 42.5)			implied Correct unsimplified mean and var			
	$Var = 50 \times 0.85 \times 0.15 (= 6.375)$	A1	[2]				
4 (i)	$P(<1) = P\left(z < \frac{1-1.04}{0.017}\right) = P(z < -2.353)$	M1		Standardising no cc, no $\sqrt{10}$ or sq			
		M1					
	= 1 - 0.9907 = 0.0093	A1	[3]	$1 - \Phi$ (final process)			
(ii)	expected number 1000 ÷ 1.04 = 961 or 962	B1	[1]	Or anything in between			
(iii)	<i>z</i> = -1.765	B1		± 1.76 to 1.77			
	$-1.765 = \frac{1-\mu}{2.017}$	M1		Standardising must have a z-			
	0.017 =1.03	A1	[3]	value, allow $\sqrt{100}$ or sq			
(iv)	expected number = $1000 \div 1.03 = 971$ or 970	B1√ [^]	[1]	Or anything in between, ft their (iii)			

Page 5			Syllabus	Paper			
	Cambridge International AS/A Level – Octob	2016	9709	61			
5 (a)	e.g. P*N*P*P*L = $\frac{5!}{3!} \times \frac{{}^{6}P_{4}}{2!}$ = 3600	M1 M1 M1 A1	[4]	Mult by 5! in num Dividing by 3! or 2! Mult by ${}^{6}P_{4}$ oe			
(b) (i)	$^{7}C_{5} \times {}^{5}C_{4} \times {}^{2}C_{1} \times {}^{2}C_{1}$ $= 420$	M1 A1	[2]	Mult 4 combs of which three are correct			
(ii)	both in team ${}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 = 240$ 420 - 240 = 180 ways	M1 M1 A1		Evaluating both in team and subtracting from (i) 240 seen can be unsimplified ft their 420, their 240 summing 2 or 3 options not both in team 2 or 3 options correct unsimplified Correct ans from correct working As above, or bowl in bat out + bowl out Multiplying two different probe			
	OR Bat in bowl out + bowl in bat out + both out $= {}^{6}C_{4} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{3} \times 2 \times 2 + {}^{6}C_{5} \times {}^{4}C_{4} \times 2 \times 2$ $= 60 + 96 + 24 = 180 \text{ ways}$ OR	M1 A1 A1					
6 (i)	Bat in bowl out + bat out = $60 + {}^{6}C_{5} \times {}^{5}C_{4} \times 2 \times 2 = 60 + 120 = 180$ ways P(B, B) = $1/4 \times 2/5$	M1 A1 A1 M1	[3]				
	= 1/10	A1	[2]				
(ii)	P(X=1) = P(R,R) + P(B,B) = 3/4 × 4/5 + 1/10 = 14/20 (7/10)	M1 M1 A1	[3]	Finding P(R, R) (=3/5) Summing two options			
(iii)	P(B B) = $\frac{P(B \cap B)}{P(B)} = \frac{1/10}{3/4 \times 1/5 + 1/4 \times 2/5}$	M1 M1		of a fi	(i) seen as nurraction $p_1 + \frac{1}{4} \times p_2$ se	en anywhere	
		A1		· · · · ·	insimplified) nom of a frac	seen as num tion, www	
	= 2/5	A1	[4]				

Page 6		Mark Scheme					
	Cambridge International AS/A Level – October/November 2016					Syllabus 9709	Paper 61
7 (i)	Factory A 9 9 9 8 8 7 4 3 0 5 3 1 1 1 Key: 9 4 2 repr A and 0.042 g for face	6 4 resents 0.049g for factory	M1 B1 B1 B1 B1 B1	[5]	factor Corre Corre Corre	mpt at ordering ory <i>B</i> ect stem ect leaves factory <i>A</i> ect leaves factory <i>B</i> ect key need factory <i>A</i> an ory <i>B</i> and units	
(ii)	median factory $B = 0.048$ g IQR = UQ - LQ = 0.055 - 0.04 = 0.015			[3]	using their key i.e. 48, 0.48 etc or correct Subt their LQ from their UQ for factory <i>B</i>		
(iii)	generally heavier in Masses more spread		B1 B1	[2]	oe must refer to context, e.g. mass		