Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

1	$[0.4 g-T=0.4 a \quad T=0.6 a$ System equation $\quad 0.4 g=(0.4+0.6) a]$ $\begin{aligned} & a=4 \mathrm{~m} \mathrm{~s}^{-2} \\ & T=2.4 \mathrm{~N} \end{aligned}$	M1 M1 A1 A1	[4]	For applying Newton's 2nd law to either particle or to the system For applying Newton's 2nd law to the other particle and attempt to solve for a and T
2 (i)	$\begin{aligned} & 2=5 a \rightarrow a=0.4 \mathrm{~ms}^{-2} \\ & {[0.1 g \sin 20-F=0.1 \times 0.4]} \end{aligned}$ $F=0.302 \mathrm{~N}$	B1 M1 A1	[3]	For applying Newton's 2nd law to the particle
(ii)	$[R=0.1 \mathrm{~g} \cos 20(=0.9397)]$ $\mu=0.3020 / 0.9397=0.321$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	[2]	For attempting to find R and using $\mu=F / R$
3 (i)	$\begin{aligned} & {\left[0=6^{2}-2 g \times s\right]} \\ & s=1.8 \\ & \text { Total height }=2.3 \mathrm{~m} \end{aligned}$	M1 A1 B1	[3]	For using $v^{2}=u^{2}+2 a s$
	Alternative for 3(i)			
	$\begin{aligned} & {\left[6^{2}=u^{2}-2 g \times 0.5\right]} \\ & u^{2}=46 \\ & 0^{2}=46-2 g s \rightarrow s=\text { total height }=2.3 \mathrm{~m} \end{aligned}$	M1 A1 B1	[3]	For using $v^{2}=u^{2}+2 a s$ to find the initial velocity

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

(ii)	$\begin{aligned} & {\left[2.3=0+0.5 g t^{2}\right]} \\ & t=0.678 \\ & \text { Total time }=2 \times 0.678=1.36 \mathrm{~s} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{gathered}$	[3]	For using $s=u t+0.5 g t^{2}$ to find time to reach the ground
	Alternative for 3(ii)			
	$[0=\sqrt{46}-g t]$ $t=\frac{\sqrt{46}}{10}=0.678$ Total time $=2 \times 0.678=1.36 \mathrm{~s}$	M1 A1 B1	[3]	Using $v=u-g t$ to find time taken to the highest point
4	$2 F+F \cos 60=15 \cos \alpha$ $F \sin 60=15 \sin \alpha$ $F=5.67 \text { and } \alpha=19.1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[6]	For resolving forces horizontally For resolving forces vertically For using Pythagoras or for using $\tan \alpha$ to find F and α Allow $F=15 \sqrt{7} / 7$
$5 \quad$ (i)	$a=0.5 \mathrm{~m} \mathrm{~s}^{-2}$	B1	[1]	
(ii)	$\begin{aligned} & {[\text { Distance }} \\ & \quad=25+100+5(5+V)+30 V+10 V] \\ & 150+45 V \\ & 150+45 V=465 \rightarrow V=7 \mathrm{~ms}^{-1} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \end{aligned}$	[3]	For attempting to find the distance travelled
(iii)	$\begin{aligned} & 1 / 2 \times 80 \times 7^{2}-1 / 2 \times 80 \times 5^{2}[=960] \\ & 20 \times(5+7) / 2 \times 10[=1200] \\ & {[80 g h=960+1200]} \\ & h=2.7 \mathrm{~m} \end{aligned}$	M1 M1 M1 A1	[4]	For change in KE For work done against friction using $F \times d$ For using PE loss = KE gain + WD against Res.

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

6 (i)	$\begin{aligned} {[\text { Work done }=50 \cos 10} & \times 20] \\ = & 984.8 \mathrm{~J} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Using WD $=F d \cos \theta$
(ii)	$\begin{aligned} & {\left[984.8=1 / 2 \times 25 v^{2}+30 \times 20\right]} \\ & v=5.55 \mathrm{~m} \mathrm{~s}^{-1} \end{aligned}$	M1 A1	[2]	Using WD by DF = KE gain + WD against Res.
(iii)	Max power $=50 \cos 10 \times 5.55=273 \mathrm{~W}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	For using Power $=F v$ Greatest power is at $v_{\text {max }}$
(iv)	$\begin{aligned} & {[50 \cos 10-30-25 g \sin 5=25 a]} \\ & a=-0.102 \mathrm{~m} \mathrm{~s}^{-2} \\ & {[0=5.55-0.102 t]} \\ & \text { Time } t=54.4 \mathrm{~s} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]	For using Newton's 2nd law up the plane For using $v=u+a t$
	Alternative for 6(iv)			
	$\begin{aligned} & \begin{array}{l} 50 \cos 10 \times s+1 / 2 \times 25 \times 5.55^{2}= \\ 25 g \times s \sin 5+30 \times s \end{array} \\ & t=302 / 5.55=54.4 \mathrm{~s} \end{aligned}$	M1 A1 M1 A1	[4]	For using WD by DF + KE loss = PE gain + WD against Res to find distance s up plane $s=151 \mathrm{~m}$ For using $s=1 / 2(u+v) t$
$7 \quad$ (i)	$[15-6 t=0]$ Max acceleration when $t=2.5 \mathrm{~s}$ Max acceleration $=18.75 \mathrm{~m} \mathrm{~s}^{-2}$	M1 A1 A1	[3]	For differentiation May be stated from an $a-t$ diagram
(ii)	$\begin{aligned} & {\left[\text { Speed }=7.5 t^{2}-t^{3}(+\mathrm{c})\right]} \\ & {\left[\text { Distance }=2.5 t^{3}-0.25 t^{4}(+\mathrm{ct}+\mathrm{d})\right]} \\ & =2.5 \times 125-0.25 \times 625=156.25 \mathrm{~m} \end{aligned}$	M1 M1 A1	[3]	For using integration to obtain speed For using integration to obtain distance Allow distance $=625 / 4$

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	41

(iii) $\quad v(5)=7.5 \times 25-125=62.5 \mathrm{~m} \mathrm{~s}^{-1}$
$\int_{5}^{k}-\frac{625}{t^{2}} \mathrm{~d} t=\left[\frac{625}{t}\right]_{5}^{k}$
$=\frac{625}{k}-\frac{625}{5}=\frac{625}{k}-125$
$\frac{625}{k}-125=v(k)-v(5)=-62.5$
$k=10$

B1		Allow $v(5)=125 / 2$ M1
A1		Integral with correct limits
M1		Use of $v(5)=62.5$ and $v(k)=0$
A1	$[5]$	

Alternative for 7(iii)

$v(5)=7.5 \times 25-125=62.5 \mathrm{~m} \mathrm{~s}^{-1}$	B1		
$v(t)=\int-\frac{625}{t^{2}} \mathrm{~d} t=\frac{625}{t}+c$	M1		Using indefinite integration
$[c=-62.5]$			
$v(t)=\frac{625}{t}-62.5$	A1		For using $v(5)=62.5$ to find c and setting $v(k)=0$
$v(k)=\frac{625}{k}-62.5=0$	M1		
$k=10$	A1	$[5]$	

