Page	4	Mark Scheme						Syllabus	Paper
	Ca	Cambridge International AS/A Level – October/November 2016					9709	41	
1		4g - T = 0.4a stem equation	T = 0.6a 0.4g = (0.4 + 0.6)a]		M1 M1		For applying Newton's 2nd law to either particle or to the system For applying Newton's 2nd law to the other particle and attempt to solve for <i>a</i> and <i>T</i>		
	<i>a</i> =	$= 4 \mathrm{ms^{-2}}$			A1				
	<i>T</i> =	= 2.4 N			A1	[4]			
2 (i)) 2 =	$= 5a \rightarrow a = 0.4 \text{ ms}$	-2		B 1				
	[0.	$1g\sin 20 - F = 0.1$	× 0.4]		M1		For applying Newton's 2nd law to the particle		
	<i>F</i> =	= 0.302 N		AG	A1	[3]			
(ii)) [<i>R</i>	$= 0.1g \cos 20 \ (= 0)$.9397)]		M1		For attem using $\mu =$	pting to find F/R	R and
	μ=	= 0.3020/0.9397 = 0	0.321		A1	[2]			
3 (i)) [0	$= 6^2 - 2g \times s$]			M1		For using	$v^2 = u^2 + 2as$	5
	<i>s</i> =	= 1.8			A1				
	То	tal height = $2.3 \mathrm{m}$			B 1	[3]			
		Alternative for 3(i)							
	[6 ²	$e^2 = u^2 - 2g \times 0.5$			M1		For using the initial	$v^2 = u^2 + 2as$ velocity	s to find
	u^2	= 46			A1				
	0^{2}	$= 46 - 2gs \rightarrow s =$	total height = $2.3 \mathrm{m}$		B 1	[3]			

Page 5	Mark Scheme	Syllabus Paper				
	Cambridge International AS/A Level – Octol	ber 2016 9709 41				
(ii)	$[2.3 = 0 + 0.5gt^2]$	M1		For using $s = ut + 0.5gt^2$ to find time to reach the ground		
	t = 0.678	A1				
	Total time = $2 \times 0.678 = 1.36$ s	B1	[3]			
	Alternative for 3(ii)					
	$\left[0 = \sqrt{46} - gt\right]$	M1		Using $v = u - gt$ to find time taken to the highest point		
	$t = \frac{\sqrt{46}}{10} = 0.678$	A1				
	Total time = $2 \times 0.678 = 1.36$ s	B1	[3]			
4		M1		For resolving forces horizontally		
	$2F + F\cos 60 = 15\cos \alpha$	A1				
		M1		For resolving forces vertically		
	$F\sin 60 = 15\sin \alpha$	A1				
		M1		For using Pythagoras or for using tan α to find <i>F</i> and α		
	$F = 5.67$ and $\alpha = 19.1$	A1	[6]	Allow $F = 15\sqrt{7} / 7$		
5 (i)	$a = 0.5 \mathrm{ms^{-2}}$	B1	[1]			
(ii)	[Distance = $25 + 100 + 5(5 + V) + 30V + 10V$]	M1		For attempting to find the distance travelled		
	150 + 45 <i>V</i> AG	A1				
	$150 + 45V = 465 \rightarrow V = 7 \mathrm{m s}^{-1}$	B 1	[3]			
(iii)	$\frac{1}{2} \times 80 \times 7^2 - \frac{1}{2} \times 80 \times 5^2 = 960$	M1		For change in KE		
	20 × (5 + 7)/2 × 10 [=1200]	M1		For work done against friction using $F \times d$		
	[80gh = 960 + 1200]	M1		For using PE loss = KE gain + WD against Res.		
	$h = 2.7 \mathrm{m}$	A1	[4]			

Page 6		Mark Scheme	Syllabus Paper				
		Cambridge International AS/A Level – Oc	ber 2016 9709 41				
6	(i)	[Work done = $50 \cos 10 \times 20$]	M1		Using WD = $Fd \cos \theta$		
		= 984.8 J	A1	[2]			
(ii)		$[984.8 = \frac{1}{2} \times 25v^2 + 30 \times 20]$	M1		Using WD by DF = KE gain + WD against Res.		
		$v = 5.55 \mathrm{ms^{-1}}$	A1	[2]			
	(iii)		M1		For using Power = Fv		
		Max power = $50\cos 10 \times 5.55 = 273 \text{ W}$	A1	[2]	Greatest power is at v_{max}		
	(iv)	$[50\cos 10 - 30 - 25g\sin 5 = 25a]$	M1		For using Newton's 2nd law up the plane		
		$a = -0.102 \mathrm{m s^{-2}}$	A1				
		[0 = 5.55 - 0.102t]	M1		For using $v = u + at$		
		Time $t = 54.4$ s	A1	[4]			
		Alternativ	ve for 6(i	v)			
			M1		For using WD by DF + KE loss = PE gain + WD against Res to find distance <i>s</i> up plane		
		$50 \cos 10 \times s + \frac{1}{2} \times 25 \times 5.55^2 =$ $25g \times s \sin 5 + 30 \times s$	A1		$s = 151 \mathrm{m}$		
			M1		For using $s = \frac{1}{2}(u+v)t$		
		$t = 302/5.55 = 54.4 \mathrm{s}$	A1	[4]			
7	(i)	[15 - 6t = 0]	M1		For differentiation		
		Max acceleration when $t = 2.5$ s	A1		May be stated from an <i>a</i> - <i>t</i> diagram		
		Max acceleration = $18.75 \mathrm{m s^{-2}}$	A1	[3]			
	(ii)	[Speed = $7.5t^2 - t^3 (+ c)$]	M1		For using integration to obtain speed		
		$[\text{Distance} = 2.5t^3 - 0.25t^4 (+ \text{ct} + \text{d})]$	M1		For using integration to obtain distance		
		$= 2.5 \times 125 - 0.25 \times 625 = 156.25 \mathrm{m}$	A1	[3]	Allow distance = $625/4$		

Page 7	Mark Scheme					Paper
	Cambridge International AS/A Level – October/November 2016				9709	41
(iii)	$v(5) = 7.5 \times 25 - 125 = 62.5 \mathrm{m s^{-1}}$	B1		Allow $v(5) = 125/2$ Integral with correct limits		
	$\int_{5}^{k} -\frac{625}{t^{2}} dt = \left[\frac{625}{t}\right]_{5}^{k}$	M1				
	$=\frac{625}{k} - \frac{625}{5} = \frac{625}{k} - 125$	A1				
	$\frac{625}{k} - 125 = v(k) - v(5) = -62.5$	M1		Use of $v(5) = 62.5$ and $v(k) = 0$		v(k) = 0
	<i>k</i> = 10	A1	[5]			
	Alternative for 7(iii)					
	$v(5) = 7.5 \times 25 - 125 = 62.5 \mathrm{m s^{-1}}$	B1				
	$v(t) = \int -\frac{625}{t^2} dt = \frac{625}{t} + c$	M1		Using ind	lefinite integr	ration
	[c = -62.5] v(t) = $\frac{625}{t} - 62.5$	A1			g $v(5) = 62.5$ to find c ing $v(k) = 0$	
	$v(k) = \frac{625}{k} - 62.5 = 0$	M1				
	<i>k</i> = 10	A1	[5]			