Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	33

1	Use law of the logarithm of a quotient Remove logarithms and obtain a correct equation, e.g. $\mathrm{e}^{z}=\frac{y+2}{y+1}$ Obtain answer $y=\frac{2-\mathrm{e}^{z}}{\mathrm{e}^{z}-1}$, or equivalent	M1 A1 A1	[3]
2	Use correct quotient or product rule Obtain correct derivative in any form Use Pythagoras to simplify the derivative to $\frac{1}{1+\cos x}$, or equivalent Justify the given statement, $-1<\cos x<1$ statement, or equivalent	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[4]
3	Use the $\tan 2 A$ formula to obtain an equation in $\tan \theta$ only Obtain a correct horizontal equation Rearrange equation as a quadratic in $\tan \theta$, e.g. $3 \tan ^{2} \theta+2 \tan \theta-1=0$ Solve for θ (usual requirements for solution of quadratic) Obtain answer, e.g. 18.4° Obtain second answer, e.g. 135°, and no others in the given interval	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[6]
4 (i)	Commence division by $x^{2}-x+2$ and reach a partial quotient $4 x^{2}+k x$ Obtain quotient $4 x^{2}+4 x+a-4$ or $4 x^{2}+4 x+b / 2$ Equate x or constant term to zero and solve for a or b Obtain $a=1$ Obtain $b=-6$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[5]
(ii)	Show that $x^{2}-x+2=0$ has no real roots Obtain roots $\frac{1}{2}$ and $-\frac{3}{2}$ from $4 x^{2}+4 x-3=0$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]
5 (i)	State equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{2} x y$	B1	[1]
(ii)	Separate variables correctly and attempts to integrate one side of equation Obtain terms of the form $a \ln y$ and $b x^{2}$ Use $x=0$ and $y=2$ to evaluate a constant, or as limits, in expression containing $a \ln \mathrm{y}$ or $b x^{2}$ Obtain correct solution in any form, e.g. $\ln y=\frac{1}{4} x^{2}+\ln 2$ Obtain correct expression for y, e.g. $y=2 \mathrm{e}^{\frac{1}{4} x^{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[5]
(iii)	Show correct sketch for $x \geqslant 0$. Needs through $(0,2)$ and rapidly increasing positive gradient.	B1	[1]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	33

6 (i)	State or imply $\mathrm{d} u=\frac{1}{2 \sqrt{x}} \mathrm{~d} x$ Substitute for x and $\mathrm{d} x$ throughout Justify the change in limits and obtain the given answer	B1 M1 A1	[3]
(ii)	Convert integrand into the form $A+\frac{B}{u+1}$ Obtain integrand $A=1, B=-2$ Integrate and obtain $u-2 \ln (u+1)$ Substitute limits correctly in an integral containing terms $a u$ and $b \ln (u+1)$, where $a b \neq 0$ Obtain the given answer following full and correct working [The f.t. is on A and B.]	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \mathbf{A 1} \downarrow+\mathbf{A 1} \downarrow \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[6]
7 (i)	State modulus $2 \sqrt{2}$, or equivalent State argument $-\frac{1}{3} \pi$ (or -60°)	$\begin{array}{\|l\|} \hline \text { B1 } \\ \hline \end{array}$	[2]
(ii) (a)	State answer $3 \sqrt{2}+\sqrt{6} \mathrm{i}$	B1	
(b)	EITHER: Substitute for z and multiply numerator and denominator by conjugate of iz Simplify the numerator to $4 \sqrt{3}+4$ i or the denominator to 8 Obtain final answer $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$ OR: \quad Substitute for z, obtain two equations in x and y and solve for x or for y Obtain $x=\frac{1}{2} \sqrt{3}$ or $y=\frac{1}{2}$ Obtain final answer $\frac{1}{2} \sqrt{3}+\frac{1}{2} \mathrm{i}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[4]
(iii)	Show points A and B in relatively correct positions Carry out a complete method for finding angle $A O B$, e.g. calculate the argument of $\frac{z^{*}}{\mathrm{i} z}$ Obtain the given answer	B1 M1 A1	[3]
8 (i)	State or imply the form $\frac{A}{x+2}+\frac{B x+C}{x^{2}+4}$ Use a correct method to determine a constant Obtain one of $A=2, B=1, C=-1$ Obtain a second value Obtain a third value	$\begin{aligned} & \text { B1 } \\ & \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[5]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	33

(ii)	Use correct method to find the first two terms of the expansion of $(x+2)^{-1}$, $\left(1+\frac{1}{2} x\right)^{-1},\left(4+x^{2}\right)^{-1} \text { or }\left(1+\frac{1}{4} x^{2}\right)^{-1}$ Obtain correct unsimplified expansions up to the term in x^{2} of each partial fraction Multiply out fully by $B x+C$, where $B C \neq 0$ Obtain final answer $\frac{3}{4}-\frac{1}{4} x+\frac{5}{16} x^{2}$, or equivalent [Symbolic binomial coefficients, e.g. $\binom{-1}{1}$ are not sufficient for the M1. The f.t. is on A, B, C.] [In the case of an attempt to expand $\left(3 x^{2}+x+6\right)(x+2)^{-1}\left(x^{2}+4\right)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final answer.]	M1 $\begin{aligned} & \mathbf{A} 1 \uparrow+\mathbf{A} 1 \downarrow^{\wedge} \\ & \mathbf{M} 1 \\ & \mathbf{A 1} \end{aligned}$	[5]
9 (i)	Differentiate both equations and equate derivatives Obtain equation $\cos a-a \sin a=-\frac{k}{a^{2}}$ State $a \cos a=\frac{k}{a}$ and eliminate k Obtain the given answer showing sufficient working	$\begin{aligned} & \text { M1* } \\ & \text { A1 + A1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[5]
(ii)	Show clearly correct use of the iterative formula at least once Obtain answer 1.077 Show sufficient iterations to 5 d.p. to justify 1.077 to 3 d.p., or show there is a sign change in the interval $(1.0765,1.0775)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]
(iii)	Use a correct method to determine k Obtain answer $k=0.55$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	[2]
10 (i)	Express general point of l in component form e.g. $(1+2 \lambda, 2-\lambda, 1+\lambda)$ Using the correct process for the modulus form an equation in λ Reduce the equation to a quadratic, e.g. $6 \lambda^{2}+2 \lambda-4=0$ Solve for λ (usual requirements for solution of a quadratic) Obtain final answers $-\mathbf{i}+3 \mathbf{j}$ and $\frac{7}{3} \mathbf{i}+\frac{4}{3} \mathbf{j}+\frac{5}{3} \mathbf{k}$	B1 M1* A1 DM1 A1	[5]
(ii)	Using the correct process, find the scalar product of a direction vector for l and a normal for p Using the correct process for the moduli, divide the scalar product by the product of the moduli and equate the result to $\frac{2}{3}$ State a correct equation in any form, e.g. $\frac{2 a-1+1}{\sqrt{\left(a^{2}+1+1\right)} \cdot \sqrt{\left(2^{2}+(-1)^{2}+1\right)}}= \pm \frac{2}{3}$ Solve for a^{2} Obtain answer $a= \pm 2$	M1 M1 A1 M1 A1	[5]

