	Page 4		Syllabus	Paper	
		Cambridge International A Level – October/November 2016	9709	33	
1		Use law of the logarithm of a quotient Remove logarithms and obtain a correct equation, e.g. $e^{z} = \frac{y+2}{y+1}$	M1 A1		
		Obtain answer $y = \frac{2 - e^z}{e^z - 1}$, or equivalent	A1		[3]
2		Use correct quotient or product rule Obtain correct derivative in any form	M1 A1		
		Use Pythagoras to simplify the derivative to $\frac{1}{1 + \cos x}$, or equivalent Justify the given statement, $-1 < \cos x < 1$ statement, or equivalent	A1 A1		[4]
3		Use the tan 2A formula to obtain an equation in tan θ only Obtain a correct horizontal equation Rearrange equation as a quadratic in tan θ , e.g. $3 \tan^2 \theta + 2 \tan \theta - 1 = 0$ Solve for θ (usual requirements for solution of quadratic) Obtain answer, e.g. 18.4° Obtain second answer, e.g. 135°, and no others in the given interval	M1 A1 A1 M1 A1 A1		[6]
4	(i)	Commence division by $x^2 - x + 2$ and reach a partial quotient $4x^2 + kx$ Obtain quotient $4x^2 + 4x + a - 4$ or $4x^2 + 4x + b / 2$ Equate x or constant term to zero and solve for a or b Obtain $a = 1$ Obtain $b = -6$	M1 A1 M1 A1 A1		[5]
	(ii)	Show that $x^2 - x + 2 = 0$ has no real roots Obtain roots $\frac{1}{2}$ and $-\frac{3}{2}$ from $4x^2 + 4x - 3 = 0$	B1 B1		[2]
5	(i)	State equation $\frac{dy}{dx} = \frac{1}{2}xy$	B1		[1]
	(ii)	Separate variables correctly and attempts to integrate one side of equation Obtain terms of the form $a \ln y$ and bx^2 Use $x = 0$ and $y = 2$ to evaluate a constant, or as limits, in expression contain	M1 A1		
		<i>a</i> ln y or bx^2 Obtain correct solution in any form, e.g. $\ln y = \frac{1}{4}x^2 + \ln 2$ Obtain correct expression for <i>y</i> , e.g. $y = 2e^{\frac{1}{4}x^2}$	M1 A1 A1		[5]
	(iii)	Show correct sketch for $x \ge 0$. Needs through (0, 2) and rapidly increasing positive gradient.	B1		[3]

	Page 5			Paper	
		Cambridge International A Level – October/November 2016	9709	33	
6	(i)	State or imply $du = \frac{1}{2\sqrt{x}} dx$	B1		
		Substitute for x and dx throughout	M1		
		Justify the change in limits and obtain the given answer	A1		[3]
	(ii)	Convert integrand into the form $A + \frac{B}{u+1}$	M1 ³	k	
		Obtain integrand $A = 1, B = -2$	A1		
		Integrate and obtain $u - 2\ln(u+1)$		[^] + A1√ [^]	
		Substitute limits correctly in an integral containing terms au and $b\ln(u+1)$,			
		where $ab \neq 0$	DM	1	
		Obtain the given answer following full and correct working [The f.t. is on <i>A</i> and <i>B</i> .]	A1		[6]
-	(;)	State modulus $2\sqrt{2}$, or equivalent			
7	(i)	State modulus $2\sqrt{2}$, or equivalent State argument $-\frac{1}{3}\pi$ (or -60°)	B1 B1		[2]
		State argument $-\frac{1}{3}\lambda$ (or -oo)	D1		[4]
	(ii) (a)	State answer $3\sqrt{2} + \sqrt{6}$ i	B1		
	(b)	<i>EITHER:</i> Substitute for <i>z</i> and multiply numerator and denominator by			
		conjugate of iz	M1		
		Simplify the numerator to $4\sqrt{3} + 4i$ or the denominator to 8	A1		
		Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	A1		
		<i>OR</i> : Substitute for z , obtain two equations in x and y and solve for x of z			
		for y Obtain $1/2$ on $n = 1$	M1		
		Obtain $x = \frac{1}{2}\sqrt{3}$ or $y = \frac{1}{2}$	A1		
		Obtain final answer $\frac{1}{2}\sqrt{3} + \frac{1}{2}i$	A1		[4]
	(iii)	Show points A and B in relatively correct positions	B1		
		Carry out a complete method for finding angle <i>AOB</i> , e.g. calculate the			
		argument of $\frac{z^*}{iz}$	M1		
		Obtain the given answer	A1		[3]
8	(i)	State or imply the form $\frac{A}{x+2} + \frac{Bx+C}{x^2+4}$	B1		
		Use a correct method to determine a constant Obtain one of $A = 2$, $B = 1$, $C = -1$	M1 A1		
		Obtain one of $A = 2, B = 1, C = -1$ Obtain a second value	A1		
		Obtain a third value	A1		[5]

Page 6	Mark Scheme	Syllabus	Paper	
	Cambridge International A Level – October/November 2016	9709	33	
(ii)	Use correct method to find the first two terms of the expansion of $(x+2)^{-1}$, $(1+\frac{1}{2}x)^{-1}$, $(4+x^2)^{-1}$ or $(1+\frac{1}{4}x^2)^{-1}$ Obtain correct unsimplified expansions up to the term in x^2 of each partial fraction Multiply out fully by $Bx + C$, where $BC \neq 0$ Obtain final answer $\frac{3}{4} - \frac{1}{4}x + \frac{5}{16}x^2$, or equivalent [Symbolic binomial coefficients, e.g. $\begin{pmatrix} -1\\ 1 \end{pmatrix}$ are not sufficient for the M1. The is on <i>A</i> , <i>B</i> , <i>C</i> .] [In the case of an attempt to expand $(3x^2 + x + 6)(x + 2)^{-1}(x^2 + 4)^{-1}$, give M1A1A1 for the expansions, M1 for multiplying out fully, and A1 for the final and a set of the set	M1 A1 e f.t.	+ A 1√ ^k	[5]
9 (i)	answer.] Differentiate both equations and equate derivatives Obtain equation $\cos a - a \sin a = -\frac{k}{a^2}$ State $a \cos a = \frac{k}{a}$ and eliminate k	M1* A1 + DM	- A1	
	Obtain the given answer showing sufficient working	A1		[5]
(ii)	Show clearly correct use of the iterative formula at least once Obtain answer 1.077 Show sufficient iterations to 5 d.p. to justify 1.077 to 3 d.p., or show there is sign change in the interval (1.0765, 1.0775)	s a M1 A1		[3]
(iii)	Use a correct method to determine k Obtain answer $k = 0.55$	M1 A1		[2]
10 (i)	Express general point of <i>l</i> in component form e.g. $(1+2\lambda, 2-\lambda, 1+\lambda)$ Using the correct process for the modulus form an equation in λ Reduce the equation to a quadratic, e.g. $6\lambda^2 + 2\lambda - 4 = 0$ Solve for λ (usual requirements for solution of a quadratic) Obtain final answers $-\mathbf{i} + 3\mathbf{j}$ and $\frac{7}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{5}{3}\mathbf{k}$	B1 M1* A1 DM A1		[5]
(ii)	Using the correct process, find the scalar product of a direction vector for <i>l</i> a normal for <i>p</i> Using the correct process for the moduli, divide the scalar product by the proof the moduli and equate the result to $\frac{2}{3}$ State a correct equation in any form, e.g. $\frac{2a-1+1}{\sqrt{a^2+1+1}} = \pm \frac{1}{\sqrt{a^2+1+1}}$ Solve for a^2 Obtain answer $a = \pm 2$	oduct M1		[5]