Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

1	Solve for 3^{x} and obtain $3^{x}=\frac{18}{7}$ Use correct method for solving an equation of the form $3^{x}=a$, where $a>0$ Obtain answer $x=0.8603$ d.p. only	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[3]
2	State correct unsimplified first two terms of the expansion of $(1+2 x)^{-\frac{3}{2}}$, e.g. $1+\left(-\frac{3}{2}\right)(2 x)$ State correct unsimplified term in x^{2}, e.g. $\left(-\frac{3}{2}\right)\left(-\frac{3}{2}-1\right)(2 x)^{2} / 2$! Obtain sufficient terms of the product of $(2-x)$ and the expansion up to the term in x^{2} Obtain final answer $2-7 x+18 x^{2}$ Do not ISW	B1 B1 M1 A1	[4]
3	EITHER: Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$ Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $3 \sin ^{2} \theta-\sin \theta-2=0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta=-41.8^{\circ}$ only [Ignore answers outside the given interval.] OR 1: \quad Square both sides of the equation and use $1+\tan ^{2} \theta=\sec ^{2} \theta$ Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9 \sin ^{2} \theta-6 \sin \theta-8=0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta=-41.8^{\circ}$ only OR 2: Multiply through by $(\sec \theta+\tan \theta)$ Use $\sec ^{2} \theta-\tan ^{2} \theta=1$ Obtain $1=3+3 \sin \theta$ Solve for $\sin \theta$ Obtain final answer $\theta=-41.8^{\circ}$ only	B1 M1 A1 M1 A1 B1 M1 A1 M1 A1 M1 B1 A1 M1 A1	[5]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

4	EITHER: EITHER: State $2 x y+x^{2} \frac{\mathrm{~d} y}{\mathrm{~d} x}$, or equivalent, as derivative of $x^{2} y$ State $6 y^{2}+12 x y \frac{\mathrm{~d} y}{\mathrm{~d} x}$, or equivalent, as derivative of $6 x y^{2}$ OR: \quad Differentiating LHS using correct product rule, state term $x y\left(1-6 \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)$, or equivalent State term $\left(y+x \frac{\mathrm{~d} y}{\mathrm{~d} x}\right)(x-6 y)$, or equivalent Equate attempted derivative of LHS to zero and set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero Obtain a horizontal equation, e.g. $6 y^{2}-2 x y=0$ (from correct work only) Explicitly reject $y=0$ as a possibility $p y^{2}-q x y=0$ Obtain an equation in x or y Obtain answer $(-3 a,-a)$ OR: \quad Rearrange to $y=\frac{9 a^{3}}{x(x-6 y)}$ and use correct quotient rule to obtain $-\frac{9 a^{3}}{x^{2}(x-6 y)^{2}} \times \ldots$. State term $(x-6 y)+x\left(1-6 y^{\prime}\right)$, or equivalent Justify division by $x(x-6 y)$ Set $\frac{\mathrm{d} y}{\mathrm{~d} x}$ equal to zero Obtain a horizontal equation, e.g. $6 y^{2}-2 x y=0$ (from correct work only) Obtain an equation in x or y Obtain answer $(-3 a,-a)$	B1 B1 B1 B1 M1* A1 A1 DM1 A1 B1 B1 B1 M1* A1 DM1 A1	[7]
$5 \quad$ (i)	$\left.\left.\begin{array}{ll}\text { EITHER: } & \text { Use } \tan 2 A \text { formula to express LHS in terms of } \tan \theta \\ & \text { Express as a single fraction in any correct form } \\ & \text { Use Pythagoras or cos } 2 A \text { formula }\end{array}\right\} \begin{array}{ll}\text { Obtain the given result correctly }\end{array}\right\}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
(ii)	Integrate and obtain a term of the form $a \ln (\cos 2 \theta)$ or $b \ln (\cos \theta)$ (or secant equivalents) Obtain integral $-\frac{1}{2} \ln (\cos 2 \theta)+\ln (\cos \theta)$, or equivalent Substitute limits correctly (expect to see use of both limits) Obtain the given answer following full and correct working	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[4]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

6 (i)	Make recognizable sketch of a relevant graph Sketch the other relevant graph and justify the given statement	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]
(ii)	Use calculations to consider the value of a relevant expression at $x=1.4$ and $x=1.6$, or the values of relevant expressions at $x=1.4$ and $x=1.6$ Complete the argument correctly with correct calculated values	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]
(iii)	State $x=2 \sin ^{-1}\left(\frac{3}{x+3}\right)$ Rearrange this in the form $\operatorname{cosec} \frac{1}{2} x=\frac{1}{3} x+1$ If working in reverse, need $\sin \frac{x}{2}=\left(\frac{3}{x+3}\right)$ for first B1	B1 B1	[2]
(iv)	Use the iterative formula correctly at least once Obtain final answer 1.471 Show sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sign change in the interval $(1.4705,1.4715)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]
$7 \quad$ (i)	Use the correct product rule Obtain correct derivative in any form, e.g. $(2-2 x) \mathrm{e}^{\frac{1}{2} x}+\frac{1}{2}\left(2 x-x^{2}\right) \mathrm{e}^{\frac{1}{2} x}$ Equate derivative to zero and solve for x Obtain $x=\sqrt{5}-1$ only	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
(ii)	Integrate by parts and reach $a\left(2 x-x^{2}\right) \mathrm{e}^{\frac{1}{2} x}+b \int(2-2 x) \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x$ Obtain $2 \mathrm{e}^{\frac{1}{2} x}\left(2 x-x^{2}\right)-2 \int(2-2 x) \mathrm{e}^{\frac{1}{2} x} \mathrm{~d} x$, or equivalent Complete the integration correctly, obtaining $\left(12 x-2 x^{2}-24\right) \mathrm{e}^{\frac{1}{2} x}$, or equivalent Use limits $x=0, x=2$ correctly having integrated by parts twice Obtain answer $24-8 \mathrm{e}$, or exact simplified equivalent	$\begin{aligned} & \text { M1* } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { DM1 } \\ & \text { A1 } \end{aligned}$	[5]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

8 (i)	State or imply a correct normal vector to either plane, e.g. $3 \mathbf{i}+\mathbf{j}-\mathbf{k}$ or $\mathbf{i}-\mathbf{j}+2 \mathbf{k}$ Use correct method to calculate their scalar product Show value is zero and planes are perpendicular	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]
(ii)	EITHER: Carry out a complete strategy for finding a point on l the line of intersection Obtain such a point, e.g. $(0,7,5),(1,0,1),(5 / 4,-7 / 4,0)$ EITHER: State two equations for a direction vector $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ for l, e.g. $3 a+b-c=0$ and $a-b+2 c=0$ Solve for one ratio, e.g. $a: b$ Obtain $a: b: c=1:-7:-4$, or equivalent State a correct answer, e.g. $\mathbf{r}=7 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}-7 \mathbf{j}-4 \mathbf{k})$ OR1: \quad Obtain a second point on l, e.g. $(1,0,1)$ Subtract vectors and obtain a direction vector for l Obtain $-\mathbf{i}+7 \mathbf{j}+4 \mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r}=\mathbf{i}+\mathbf{k}+\lambda(-\mathbf{i}+7 \mathbf{j}+4 \mathbf{k})$ OR2: Attempt to find the vector product of the two normal vectors Obtain two correct components of the product Obtain $\mathbf{i}-7 \mathbf{j}-4 \mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r}=7 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}-7 \mathbf{j}-4 \mathbf{k})$ OR1: Express one variable in terms of a second variable Obtain a correct simplified expression, e.g. $y=7-7 x$ Express the third variable in terms of the second Obtain a correct simplified expression, e.g. $z=5-4 x$ Form a vector equation for the line Obtain a correct equation, e.g. $\mathbf{r}=7 \mathbf{j}+5 \mathbf{k}+\lambda(\mathbf{i}-7 \mathbf{j}-4 \mathbf{k})$ OR2: Express one variable in terms of a second variable Obtain a correct simplified expression, e.g. $z=5-4 x$ Express the same variable in terms of the third Obtain a correct simplified expression e.g. $z=(7+4 y) / 7$ Form a vector equation for the line Obtain a correct equation, e.g. $\mathbf{r}=\frac{5}{4} \mathbf{i}-\frac{7}{4} \mathbf{j}+\lambda\left(-\frac{1}{4} \mathbf{i}+\frac{7}{4} \mathbf{j}+\mathbf{k}\right)$	M1 A1 B1 M1 A1 A1 ${ }^{\wedge}$ B1 M1 A1 A1 ${ }^{\wedge}$ M1 A1 A1 A1 ${ }^{\wedge}$ M1 A1 M1 A1 M1 A1 § M1 A1 M1 A1 M1 A1^	[6]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

9 (a)	EITHER: OR1: OR2:	Use quadratic formula to solve for w Use $\mathrm{i}^{2}=-1$ Obtain one of the answers $w=\frac{1}{2 \mathrm{i}+1}$ and $w=-\frac{5}{2 \mathrm{i}+1}$ Multiply numerator and denominator of an answer by $-2 i+1$, or equivalent Obtain final answers $\frac{1}{5}-\frac{2}{5} \mathrm{i}$ and $-1+2 \mathrm{i}$ Multiply the equation by $1-2 \mathrm{i}$ Use $\mathrm{i}^{2}=-1$ Obtain $5 w^{2}+4 w(1-2 i)-(1-2 i)^{2}=0$, or equivalent Use quadratic formula or factorise to solve for w Obtain final answers $\frac{1}{5}-\frac{2}{5} \mathrm{i}$ and $-1+2 \mathrm{i}$ Substitute $w=x+\mathrm{i} y$ and form equations for real and imaginary parts Use $\mathrm{i}^{2}=-1$ Obtain $\left(x^{2}-y^{2}\right)-4 x y+4 x-1=0$ and $2\left(x^{2}-y^{2}\right)+2 x y+4 y+2=0$ o.e. Form equation in x only or y only and solve Obtain final answers $\frac{1}{5}-\frac{2}{5} \mathrm{i}$ and $-1+2 \mathrm{i}$	M1 M1 A1 M1 A1 M1 M1 A1 M1 A1 M1 M1 A1 M1 A1	[5]
(b)	Show a cir Show a cir Show half- Show half- Shade the	cle with centre $1+\mathrm{i}$ cle with radius 2 line $\arg z=\frac{1}{4} \pi$ line $\arg z=-\frac{1}{4} \pi$ correct region	B1 B1 B1 B1 B1	[5]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2016	9709	32

10 (i)	Separate variables correctly and integrate at least one side Integrate and obtain term $k t$, or equivalent Carry out a relevant method to obtain A and B such that $\frac{1}{x(4-x)} \equiv \frac{A}{x}+\frac{B}{4-x}$, or equivalent Obtain $A=B=\frac{1}{4}$, or equivalent Integrate and obtain terms $\frac{1}{4} \ln x-\frac{1}{4} \ln (4-x)$, or equivalent EITHER: Use a pair of limits in an expression containing $p \ln x, q \ln (4-x)$ and $r t$ and evaluate a constant Obtain correct answer in any form, e.g. $\ln x-\ln (4-x)=4 k t-\ln 9$, or $\ln \left(\frac{x}{4-x}\right)=4 k t-8 k$ Use a second pair of limits and determine k Obtain the given exact answer correctly OR: Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing $p \ln x, q \ln (4-x)$ and $r t$ and evaluate a constant Obtain $\ln \frac{x}{4-x}=t \ln 3-\ln 9$ or equivalent	M1 A1 M1* A1 A1§ DM1 A1 DM1 A1 M1* A1 DM1 A1	[9]
(ii)	Substitute $x=3.6$ and solve for t Obtain answer $t=4$	M1	[2]

