Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

2	Use correct Obtain and State correct Obtain sufficients	Solve for 3^x and obtain $3^x = \frac{18}{7}$ Use correct method for solving an equation of the form $3^x = a$, where $a > 0$ Obtain answer $x = 0.860$ 3 d.p. only State correct unsimplified first two terms of the expansion of $(1 + 2x)^{-\frac{3}{2}}$, e.g. $1 + (-\frac{3}{2})(2x)$ State correct unsimplified term in x^2 , e.g. $(-\frac{3}{2})(-\frac{3}{2}-1)(2x)^2/2!$ Obtain sufficient terms of the product of $(2-x)$ and the expansion up to the term in x^2 Obtain final answer $2-7x+18x^2$ Do not ISW		
3	EITHER: OR 1:	Correctly restate the equation in terms of $\sin \theta$ and $\cos \theta$ Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $3\sin^2 \theta - \sin \theta - 2 = 0$ Solve a three-term quadratic for $\sin \theta$ Obtain final answer $\theta = -41.8^{\circ}$ only [Ignore answers outside the given interval.]	B1 M1 A1 M1 A1	[4]
	OR 2:	Correct method to obtain a horizontal equation in $\sin \theta$ Reduce the equation to a correct quadratic in any form, e.g. $9\sin^2\theta - 6\sin\theta - 8 = 0$ Solve a three-term quadratic for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only Multiply through by $(\sec\theta + \tan\theta)$ Use $\sec^2\theta - \tan^2\theta = 1$ Obtain $1 = 3 + 3\sin\theta$ Solve for $\sin\theta$ Obtain final answer $\theta = -41.8^{\circ}$ only	M1 A1 M1 A1 M1 B1 A1 M1 A1	[5]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

		ı			1	
4		EITHER:	EITHER:	State $2xy + x^2 \frac{dy}{dx}$, or equivalent, as derivative of x^2y	B1	
				State $6y^2 + 12xy \frac{dy}{dx}$, or equivalent, as derivative of $6xy^2$	B1	
			OR:	Differentiating LHS using correct product rule, state term $xy(1-6\frac{dy}{dx})$, or		
				equivalent	B1	
				State term $(y + x \frac{dy}{dx})(x - 6y)$, or equivalent	B1	
				Equate attempted derivative of LHS to zero and set $\frac{dy}{dx}$ equal to zero	M1*	
				Obtain a horizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				Explicitly reject $y = 0$ as a possibility $py^2 - qxy = 0$	A1	
				Obtain an equation in x or y	DM1	
				Obtain answer $(-3a, -a)$	A1	
		OR:	Rearrange	to $y = \frac{9a^3}{x(x-6y)}$ and use correct quotient rule to obtain $-\frac{9a^3}{x^2(x-6y)^2} \times \dots$	B1	
			State term	(x-6y)+x(1-6y'), or equivalent	B1	
			Justify div	vision by $x(x - 6y)$	B1	
			Set $\frac{\mathrm{d}y}{\mathrm{d}x}$ equ	ual to zero	M1*	
			Obtain a h	norizontal equation, e.g. $6y^2 - 2xy = 0$ (from correct work only)	A1	
				equation in x or y	DM1	F. 673
			Obtain ans	swer $(-3a, -a)$	A1	[7]
5	(i)	EITHER:	Use tan 2A	4 formula to express LHS in terms of $\tan \theta$	M1	
				s a single fraction in any correct form	A1	
			•	goras or cos 2A formula given result correctly	M1 A1	
			Ootain the	z given result correctly	711	
		OR:		HS in terms of $\sin 2\theta$, $\cos 2\theta$, $\sin \theta$ and $\cos \theta$	M1	
				s a single fraction in any correct form	A1 M1	
				goras or $\cos 2A$ formula or $\sin(A - B)$ formula e given result correctly	A1	[4]
	(ii)	Integrate a		term of the form $a \ln(\cos 2\theta)$ or $b \ln(\cos \theta)$ (or secant equivalents)	M1*	
	(11)			$\cos 2\theta$) + $\ln(\cos \theta)$, or equivalent	A1	
			-	ectly (expect to see use of <u>both</u> limits)	DM1	
				ver following full and correct working	A1	[4]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

6 (i)	Make recognizable sketch of a relevant graph Sketch the other relevant graph and justify the given statement	B1 B1	[2]
(ii)	Use calculations to consider the value of a relevant expression at $x = 1.4$ and $x = 1.6$, or the values of relevant expressions at $x = 1.4$ and $x = 1.6$. Complete the argument correctly with correct calculated values	M1 A1	[2]
(iii)	State $x = 2\sin^{-1}\left(\frac{3}{x+3}\right)$ Rearrange this in the form $\csc\frac{1}{2}x = \frac{1}{3}x + 1$ If working in reverse, need $\sin\frac{x}{2} = \left(\frac{3}{x+3}\right)$ for first B1	B1 B1	[2]
(iv)	Use the iterative formula correctly at least once Obtain final answer 1.471 Show sufficient iterations to 5 d.p. to justify 1.471 to 3 d.p., or show there is a sign change in the interval (1.4705, 1.4715)	M1 A1 A1	[3]
7 (i)	Use the correct product rule Obtain correct derivative in any form, e.g. $(2-2x)e^{\frac{1}{2}x} + \frac{1}{2}(2x-x^2)e^{\frac{1}{2}x}$ Equate derivative to zero and solve for x Obtain $x = \sqrt{5} - 1$ only	M1 A1 M1 A1	[4]
(ii)	Integrate by parts and reach $a(2x-x^2)e^{\frac{1}{2}x}+b\int(2-2x)e^{\frac{1}{2}x}dx$ Obtain $2e^{\frac{1}{2}x}(2x-x^2)-2\int(2-2x)e^{\frac{1}{2}x}dx$, or equivalent Complete the integration correctly, obtaining $(12x-2x^2-24)e^{\frac{1}{2}x}$, or equivalent Use limits $x=0$, $x=2$ correctly having integrated by parts twice Obtain answer $24-8e$, or exact simplified equivalent	M1* A1 A1 DM1 A1	[5]

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

8 (i)	Use correc	ct method to	bet normal vector to either plane, e.g. $3\mathbf{i} + \mathbf{j} - \mathbf{k}$ or $\mathbf{i} - \mathbf{j} + 2\mathbf{k}$ or calculate their scalar product and planes are perpendicular	B1 M1 A1	[3]
(ii)	EITHER:	Obtain su	a complete strategy for finding a point on l the line of intersection ch a point, e.g. $(0, 7, 5)$, $(1, 0, 1)$, $(5/4, -7/4, 0)$ State two equations for a direction vector $a\mathbf{i} + b\mathbf{j} + c\mathbf{k}$ for l ,	M1 A1	
			e.g. $3a + b - c = 0$ and $a - b + 2c = 0$ Solve for one ratio, e.g. $a : b$ Obtain $a : b : c = 1 : -7 : -4$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	B1 M1 A1 A1√	
		<i>OR</i> 1:	Obtain a second point on l , e.g. $(1, 0, 1)$ Subtract vectors and obtain a direction vector for l Obtain $-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = \mathbf{i} + \mathbf{k} + \lambda(-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$	B1 M1 A1 A1√	
		OR2:	Attempt to find the vector product of the two normal vectors Obtain two correct components of the product Obtain $\mathbf{i} - 7\mathbf{j} - 4\mathbf{k}$, or equivalent State a correct answer, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1 A1 A1√	
	OR1:	Obtain a c Express th Obtain a c Form a ve	ne variable in terms of a second variable correct simplified expression, e.g. $y = 7 - 7x$ ne third variable in terms of the second correct simplified expression, e.g. $z = 5 - 4x$ ector equation for the line correct equation, e.g. $\mathbf{r} = 7\mathbf{j} + 5\mathbf{k} + \lambda(\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$	M1 A1 M1 A1 M1 A1	
	OR2:	Obtain a c Express th Obtain a c Form a ve	ne variable in terms of a second variable correct simplified expression, e.g. $z = 5 - 4x$ ne same variable in terms of the third correct simplified expression e.g. $z = (7 + 4y)/7$ ector equation for the line correct equation, e.g. $\mathbf{r} = \frac{5}{4}\mathbf{i} - \frac{7}{4}\mathbf{j} + \lambda(-\frac{1}{4}\mathbf{i} + \frac{7}{4}\mathbf{j} + \mathbf{k})$	M1 A1 M1 A1 M1 A1√	[6]

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

9	(a)	EITHER:	Use quadratic formula to solve for w Use $i^2 = -1$ Obtain one of the answers $w = \frac{1}{2i+1}$ and $w = -\frac{5}{2i+1}$ Multiply numerator and denominator of an answer by $-2i+1$, or equivalent Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	M1 M1 A1 M1 A1	
		OR1:	Multiply the equation by $1-2i$ Use $i^2 = -1$ Obtain $5w^2 + 4w(1-2i) - (1-2i)^2 = 0$, or equivalent Use quadratic formula or factorise to solve for w Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$ Substitute $w = x + iy$ and form equations for real and imaginary parts Use $i^2 = -1$	M1 M1 A1 M1 A1	
	(b)		Obtain $(x^2 - y^2) - 4xy + 4x - 1 = 0$ and $2(x^2 - y^2) + 2xy + 4y + 2 = 0$ o.e. Form equation in x only or y only and solve Obtain final answers $\frac{1}{5} - \frac{2}{5}i$ and $-1 + 2i$	A1 M1 A1	[5]
		Show half Show half	The radius 2 The arg $z = \frac{1}{4}\pi$ The arg $z = -\frac{1}{4}\pi$ Correct region	B1 B1 B1 B1	[5]

Page 9	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9709	32

10	(i)	Integrate a	ariables correctly and integrate at least one side and obtain term kt , or equivalent a relevant method to obtain A and B such that $\frac{1}{x(4-x)} = \frac{A}{x} + \frac{B}{4-x}$, or equivalent	M1 A1 M1*	
		Obtain A	$=B=\frac{1}{4}$, or equivalent	A1	
		Integrate a	and obtain terms $\frac{1}{4} \ln x - \frac{1}{4} \ln(4 - x)$, or equivalent	A1 [∧]	
		EITHER:	Use a pair of limits in an expression containing $p \ln x$, $q \ln(4 - x)$ and rt and evaluate a constant Obtain correct answer in any form, e.g. $\ln x - \ln(4 - x) = 4kt - \ln 9$,	DM1	
			or $\ln\left(\frac{x}{4-x}\right) = 4kt - 8k$	A1	
			Use a second pair of limits and determine <i>k</i> Obtain the given exact answer correctly	DM1 A1	
		OR:	Use both pairs of limits in a definite integral Obtain the given exact answer correctly Substitute k and either pair of limits in an expression containing $p \ln x$, $q \ln (4 - x)$ and rt and evaluate a constant	M1* A1 DM1	
			Obtain $\ln \frac{x}{4-x} = t \ln 3 - \ln 9$ or equivalent	A1	[9]
	(ii)	Substitute Obtain ans	x = 3.6 and solve for $tswer t = 4$	M1 A1	[2]