Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	23

1 (i)	Use the iterative formula correctly at least once Obtain final answer 2.289 Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval $(2.2885,2.2895)$	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	[3]
(ii)	State equation $x=\frac{4}{x^{2}}+\frac{2}{3} x$ or equivalent Obtain exact value $12^{\frac{1}{3}}$ or $\sqrt[3]{12}$	B1 B1	[2]
2	State or imply $\ln y=\ln K+p \ln x$ Calculate gradient of line Obtain $p=1.35$ Substitute to find K Obtain $K=7.11$ or $K=7.12$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]
3 (i)	Rewrite integrand as $\sec ^{2} 4 x-1$ Integrate to obtain $\frac{1}{4} \tan 4 x-x$, condoning absence of $+c$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { B1 } \\ \hline \end{array}$	[2]
(ii)	Integrate to obtain $2 \sin 2 x-2 \cos 3 x$ Apply limits correctly to integral of form $k_{1} \sin 2 x+k_{2} \cos 3 x$ Obtain 3- $\sqrt{2}$ or exact equivalent	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[3]
4 (i)	Substitute $x=\frac{1}{2}$ and equate to zero Obtain $a=2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]
(ii)	Divide by $2 x-1$ at least as far as $x^{2}+k x$ Obtain quotient $x^{2}+2 x+5$ Calculate discriminant of 3 -term quadratic expression or equivalent Obtain -16 and conclude appropriately	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
(iii)	Use logarithms with power law shown in solving $6^{y}=\frac{1}{2}$ Obtain -0.387	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]
5 (i)	State or imply correct ordinates $\sqrt{2}, \sqrt{1+\mathrm{e}}, \sqrt{1+\mathrm{e}^{2}}$ or decimal equivalents Use correct formula, or equivalent, correctly with $h=3$ and three ordinates Obtain answer 12.25 with no errors seen	$\begin{array}{\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[3]
(ii)	Refer to top of each trapezium being above curve or equivalent	B1	[1]
(iii)	State or imply volume is $\int \pi\left(1+e^{\frac{1}{3} x}\right) \mathrm{d} x$ Integrate to obtain form $k_{1} x+k_{2} \mathrm{e}^{\frac{1}{3} x}$ with or without π Obtain correct $\pi\left(x+3 \mathrm{e}^{\frac{1}{3} x}\right)$ or $x+3 \mathrm{e}^{\frac{1}{3} x}$ Obtain $\pi\left(3+3 \mathrm{e}^{2}\right)$ or exact equivalent	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[4]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	23

6 (i)	State $\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{t+1}$ Use product rule for derivative of y Obtain $2 t \ln t+t$ or equivalent Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \div \frac{\mathrm{d} x}{\mathrm{~d} t}$ Obtain $(t+1)(2 t \ln t+t)$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \hline \end{array}$	[5]
(ii)	Solve $2 \ln t+1=0$ Obtain $t=\mathrm{e}^{-\frac{1}{2}}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]
(iii)	Identify $t=1$ only Obtain 2	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \hline \end{aligned}$	[2]
$7 \quad$ (i)	State $\frac{3}{\cos \theta}+\frac{4}{\sin \theta}$ Use identity for $\sin 2 \theta$ and obtain expression of form $a \sin \theta+b \cos \theta$ Obtain $6 \sin \theta+8 \cos \theta$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]
(ii)	State $R=10$, following their $a \sin \theta+b \cos \theta$ Use appropriate trigonometry to find α Obtain 53.1(3) with no errors seen	$\begin{aligned} & \text { B1 } \downarrow \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[3]
(iii)	Carry out correct process to find one angle between 0 and 360 Obtain 82.4 or 82.5 Carry out correct process to find second angle between 0 and 360 Obtain 351.3 and no others between 0 and 360	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]

