	Page	4 Mark Scheme	Mark Scheme Syllabus			
		Cambridge International AS Level – October/November 2016	9709	23		
1	(i)	Use the iterative formula correctly at least once Obtain final answer 2.289 Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval (2.2885, 2.2895)		M1 A1 B1	[3]	
	(ii)	State equation $x = \frac{4}{x^2} + \frac{2}{3}x$ or equivalent Obtain exact value $12^{\frac{1}{3}}$ or $\sqrt[3]{12}$				
2		State or imply $\ln y = \ln K + p \ln x$ Calculate gradient of line Obtain $p = 1.35$ Substitute to find K Obtain $K = 7.11$ or $K = 7.12$		B1 M1 A1 M1 A1	[5]	
3	(i)	Rewrite integrand as $\sec^2 4x - 1$ Integrate to obtain $\frac{1}{4} \tan 4x - x$, condoning absence of $+c$		B1 B1	[2]	
	(ii)	Integrate to obtain $2\sin 2x - 2\cos 3x$ Apply limits correctly to integral of form $k_1 \sin 2x + k_2 \cos 3x$ Obtain $3 - \sqrt{2}$ or exact equivalent		B1 M1 A1	[3]	
4	(i)	Substitute $x = \frac{1}{2}$ and equate to zero Obtain $a = 2$		M1 A1	[2]	
	(ii)	Divide by $2x-1$ at least as far as $x^2 + kx$ Obtain quotient $x^2 + 2x + 5$ Calculate discriminant of 3-term quadratic expression or equivalent Obtain -16 and conclude appropriately		M1 A1 M1 A1	[4]	
	(iii)	Use logarithms with power law shown in solving $6^y = \frac{1}{2}$ Obtain -0.387		M1 A1	[2]	
5	(i)	State or imply correct ordinates $\sqrt{2}$, $\sqrt{1+e}$, $\sqrt{1+e^2}$ or decimal equivalents Use correct formula, or equivalent, correctly with $h = 3$ and three ordinates Obtain answer 12.25 with no errors seen		B1 M1 A1	[3]	
	(ii)	Refer to top of each trapezium being above curve or equivalent		B1	[1]	
	(iii)	State or imply volume is $\int \pi (1 + e^{\frac{1}{3}x}) dx$ Integrate to obtain form $k_1 x + k_2 e^{\frac{1}{3}x}$ with or without π Obtain correct $\pi (x + 3e^{\frac{1}{3}x})$ or $x + 3e^{\frac{1}{3}x}$ Obtain $\pi (3 + 3e^2)$ or exact equivalent		B1 M1 A1 A1	[4]	

1	Page	5	Mark Scheme	Syllabus	Paper	
		С	ambridge International AS Level – October/November 2016	9709	23	
6	(i)	State $\frac{d}{d}$ Use pro Obtain Use $\frac{dy}{dx}$ Obtain	$\begin{aligned} \frac{dt}{dt} &= \frac{1}{t+1} \\ \text{oduct rule for derivative of } y \\ 2t \ln t + t \text{ or equivalent} \\ &= \frac{dy}{dt} \div \frac{dx}{dt} \\ (t+1)(2t \ln t + t) \end{aligned}$		B1 M1 A1 M1 A1	[5]
	(ii)	Solve 2 Obtain		M1 A1	[2]	
	(iii)	Identify Obtain	t = 1 only 2		B1 B1	[2]
7	(i)	State – c Use ide Obtain	$\frac{3}{\cos\theta} + \frac{4}{\sin\theta}$ ntity for $\sin 2\theta$ and obtain expression of form $a\sin\theta + b\cos\theta$ $6\sin\theta + 8\cos\theta$		B1 M1 A1	[3]
	(ii)	State <i>R</i> Use app Obtain	$\theta = 10$, following their $a\sin\theta + b\cos\theta$ propriate trigonometry to find α 53.1(3) with no errors seen		B1√ [№] M1 A1	[3]
	(iii)	Carry o Obtain Carry o Obtain	ut correct process to find one angle between 0 and 360 82.4 or 82.5 ut correct process to find second angle between 0 and 360 351.3 and no others between 0 and 360		M1 A1 M1 A1	[4]