Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	22

1	State non-modulus equation $(0.4 x-0.8)^{2}=4$ or equivalent or corresponding pair of linear equations Solve 3-term quadratic equation or pair of linear equations Obtain -3 and 7	B1 M1 A1	[3]	SR One solution only - B1 Must see some evidence of attempt to solve the quadratic for M1 for at least one value of x For a pair of linear equations, there must be a sign difference If extra solutions are given then A0
$2 \quad$ (i)	Use $4^{y}=2^{2 y}$ Attempt solution of quadratic equation in 2^{y} Obtain finally $2^{y}=7$ only	B1 M1 A1	[3]	
(ii)	Apply logarithms to solve equation of form $2^{y}=k$ where $k>0$ Obtain 2.81	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	[2]	Must be using their positive answer for (i)
3 (i)	Obtain integral of form $k_{1} \mathrm{e}^{\frac{1}{2} x}+k_{2} x$ Obtain correct $8 \mathrm{e}^{\frac{1}{2} x}+3 x$ oe Use limits correctly to confirm $8 \mathrm{e}-2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]	Allow $k_{1}=4$
(ii)	Draw increasing curve in first quadrant Draw more or less accurate sketch with correct curvature, gradient at $x=0$ must be >0	M1 A1	[2]	If incorrect y intercept used then M1 A0 Allow if no intercept stated
(iii)	State more and refer to top(s) of trapezium(s) above curve	B1	[1]	Can be shown using a diagram. Reference to a trapezium must be made

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	22

4 (i)	Substitute $x=-1$ and simplify Obtain $-4+a-a+4=0$ and conclude appropriately	M1	[2]	Allow attempt at long division , must get down to a remainder Allow M1 if at least 2 numerical values of a are used May equate to $(x+1)\left(A x^{2}+B x+C\right)+R-$ allow M1 if they get as far as finding R Must have a conclusion - allow 'hence shown', or made a statement of intent at the start of the question
(ii)	Substitute $x=2$ and equate to -42 and attempt to solve Obtain $a=-13$	M1 A1	[2]	May equate to $(x-2)\left(A x^{2}+B x+C\right)$, must have a complete method to get as far as $a=\ldots$ to obtain M1
(iii)	Divide $\mathrm{p}(x)$ with their a at least as far as $4 x^{2}+k x$ Obtain $4 x^{2}-17 x+4$ Obtain $(x+1)(4 x-1)(x-4)$ or equivalent if x^{2} already involved Obtain $\left(x^{2}+1\right)(2 x-1)(2 x+1)(x-2)(x+2)$	M1 A1 A1 A1 A1	[4]	If $(x+1)(4 x-1)(x-4)$ seen with no evidence of long division then allow the marks
5 (i)	Use quotient rule (or product rule) to find first derivative Obtain $\frac{\frac{4}{x}\left(x^{2}+1\right)-8 x \ln x}{\left(x^{2}+1\right)^{2}}$ or equivalent State $\frac{4}{x}\left(x^{2}+1\right)-8 x \ln x=0$ or equivalent Carry out correct process to produce equation without \ln, without any incorrect working Confirm $m=\mathrm{e}^{0.5\left(1+m^{-2}\right)}$ or $x=\mathrm{e}^{0.5\left(1+x^{-2}\right)}$	M1 A1 A1 M1 A1	[5]	Quotient: Must have a difference in the numerator and $\left(x^{2}+1\right)^{2}$ in the denominator Product: Must see an application of the chain rule. Condone missing brackets if correct use is implied by correct work later

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	22

\begin{tabular}{|c|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
Use iterative formula correctly at least once \\
Obtain final answer 1.895 \\
Show sufficient iterations to 6 sf to justify answer or show sign change in interval (\(1.8945,1.8955\))
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1
\end{tabular} \& [3] \& Should not be attempting to use \(x_{0}=0\), but if used and 'recovered' then SC M1 A1- usually see \(m_{1}=1.6487\) \\
\hline 6 (i) \& \begin{tabular}{l}
Use \(\cos 2 \theta=2 \cos ^{2} \theta-1\) appropriately twice \\
Simplify to confirm \(1-\frac{1}{2} \sec ^{2} \theta\)
\end{tabular} \& B1

B1 \& [2] \& | Alternative method |
| :--- |
| $\frac{1-2 \sin ^{2} \theta}{2 \cos ^{2} \theta}=\frac{1}{2} \sec ^{2} \theta-\tan ^{2} \theta$ or $\begin{equation*} \frac{1}{2 \cos ^{2} \theta}-\tan ^{2} \theta \tag{B1} \end{equation*}$ |
| then as for 2nd B1 | \\

\hline (ii) \& | Use $\sec ^{2} \alpha=1+\tan ^{2} \alpha$ |
| :--- |
| Obtain equation $\tan ^{2} \alpha+10 \tan \alpha+25=0$ or equivalent |
| Attempt solution of 3-term quadratic equation for $\tan \alpha$ and use correct process for finding value of α from negative value of $\tan \alpha$ |
| Obtain 1.77 | \& B1

B1
M1

A1 \& [4] \& | If quadratic is incorrect, need to see evidence of attempt to solve as required to obtain M1 |
| :--- |
| Allow better or in terms of $\pi\left(\frac{1013 \pi}{1800}\right)$ | \\

\hline (iii) \& | State or imply integrand $1-\frac{1}{2} \sec ^{2} \frac{1}{2} x$ |
| :--- |
| Obtain integral of form $k_{1} x-k_{2} \tan \frac{1}{2} x$ |
| Obtain correct $x-\tan \frac{1}{2} x$ |
| Apply limits correctly to obtain $\pi-2$ | \& | B1 |
| :--- |
| M1 |
| A1 |
| A1 | \& [4] \& \\

\hline
\end{tabular}

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	22

$7 \quad$ (i)	Use correct addition formula for either $\cos \left(\theta+\frac{1}{6} \pi\right)$ or, after diffn, $\sin \left(\theta+\frac{1}{6} \pi\right)$ Differentiate to obtain $\frac{\mathrm{dy}}{\mathrm{d} \theta}$ of form $k_{1} \sin \theta+k_{2} \cos \theta$ or $k \sin \left(\theta+\frac{1}{6} \pi\right)$ Divide attempt at $\frac{\mathrm{d} y}{\mathrm{~d} \theta}$ by attempt at $\frac{\mathrm{d} x}{\mathrm{~d} \theta}$ Obtain $\frac{-\frac{3 \sqrt{3}}{2} \sin \theta-\frac{3}{2} \cos \theta}{4 \cos \theta}$ or equivalent Simplify to obtain $-\frac{3}{8}(1+\sqrt{3} \tan \theta)$	B1 M1 M1 A1 A1	[5]	Condone 'missing brackets'
(ii)	Identify $\theta=0$ Substitute 0 into formula for $\frac{d y}{d x}$ and take negative reciprocal Obtain gradient of normal $\frac{8}{3}$ Form equation of normal through point $\left(0,1+\frac{3 \sqrt{3}}{2}\right)$ Obtain $y=\frac{8}{3} x+1+\frac{3 \sqrt{3}}{2}$ or equivalent	B1 M1 A1 M1 A1	[5]	soi be implied by $y=1+\frac{3 \sqrt{3}}{2}$ or 3.6 Must be from correct (i)

