	Page 4		Mark Scheme					Paper]	
			Cambridge International AS Level – October/November 2016				9709	22]	
1		1		<u> </u>	r					
1		State non-modulus equation $(0.4x - 0.8)^2 = 4$ or equivalent or corresponding pair of linear equations		B1		SR One solution	only – B1			
		Solve 3-term quadratic equation or pair of linear equations				Must see some evidence of attempt to solve the quadratic for M1 for at least one value of x . For a pair of linear equations, there must be a sign difference				
		Obtain	n –3 and 7	A1	[3]	If extra solutions are given then A0				
2	(i)	Use 4	$y = 2^{2y}$	B1						
		Attem	pt solution of quadratic equation in 2^y	M1						
		Obtaiı	n finally $2^y = 7$ only	A1	[3]					
	(ii)	Apply $2^{y} = k$	logarithms to solve equation of form where $k > 0$	M1		Must be using the	eir positive ar	nswer for (i)		
		Obtain	n 2.81	A1	[2]	2]				
3	(i)	Obtain	n integral of form $k_1 e^{\frac{1}{2}x} + k_2 x$	M1		Allow $k_1 = 4$				
		Obtaiı	n correct $8e^{\frac{1}{2}x} + 3x$ oe	A1						
		Use li	mits correctly to confirm 8e – 2	A1	[3]					
	(ii)	Draw	increasing curve in first quadrant	M1		If incorrect y inter	rcept used the	en M1 A0		
		Draw curvat gradie	more or less accurate sketch with correct sure, ant at $x = 0$ must be >0	A1		Allow if no interc	ept stated			
					[2]					
	(iii)	State i above	more and refer to top(s) of trapezium(s) curve	B1	[1]	Can be shown usi Reference to a tra	ng a diagram pezium must	ı. t be made		

	Ρ	age 5	Mark Scheme					Paper		
			Cambridge International AS Level –	Octob	er/N	ovember 2016	9709	22		
		r		r	. <u> </u>	[
4	(i)	Substi	tute $x = -1$ and simplify	M1		Allow attempt at to a remainder	long division , must get dow east 2 numerical values of <i>a</i>			
						Allow M1 if at le				
				are used			$(x+1)(4x^2+Bx+C)+R$			
						Nay equate to $(x+1)(Ax + Bx + C)$				
						anow with it they get as far as finding				
		Obtain approj	a -4 + a - a + 4 = 0 and conclude priately	A1	[2]	Must have a conc shown', or made start of the questi	nclusion - allow 'hence le a statement of intent at the stion			
	(ii)	Subeti	tute $x = 2$ and equate to -42 and attempt to							
	(11)	solve	tute $x = 2$ and equate to -42 and attempt to	M1		May equate to (x)	$(x-2)(Ax^2+Ax^2)$	Bx + C, mu	ist	
						have a complete r to obtain M1	method to get	as far as a	=	
		Obtair	a = -13	A1						
					[2]					
	(iii)	Divide	e $p(x)$ with their <i>a</i> at least as far as							
		$4x^{2} +$	kx	M1						
		01.	4 ² 17 4							
		Obtair	$1 4x^{-} - 1/x + 4$	AI						
		Obtair	$(x+1)(4x-1)(x-4)$ or equivalent if x^2							
		alread	y involved	A1	If $(x+1)(4x-1)(x-4)$ of long division then a		(x-4) seen w	-4) seen with no evidence		
							hen allow the	marks		
		Obtair	$(x^{2}+1)(2x-1)(2x+1)(x-2)(x+2)$	A1	E 4 1					
_					[4]					
5	(1)	Use qu deriva	tive	M1		Quotient: Must h	ave a differer	ice in the		
		aerrva				numerator and (x	$(x^2 + 1)^2$ in the	denominato	or	
						(
		Obtair	$\frac{\frac{4}{x}(x^2+1)-8x\ln x}{2}$ or equivalent	A1		Product: Must see	e an applicati	on of the ch	ain	
		$(x^2 + 1)^2$				rule.				
		State	$\frac{4}{x}(x^2+1)-8x\ln x=0$ or equivalent	A1		Condone missing implied by correct	brackets if c t work later	orrect use is	5	
		Carry	out correct process to produce equation			1				
		withou	at ln, without any incorrect working	M1						
		0 0	$(0.5(1+m^{-2}))$ $(0.5(1+x^{-2}))$							
		Confi	$m m = e^{-\omega (1 + m)}$ or $x = e^{-\omega (1 + m)}$	Al	[5]					
1		1		1	1.21	1				

Pa		age 6	Mark Scheme					Paper	
			Cambridge International AS Level – October/November 2016				9709	22	
	(11)	Use iterative formula correctly at least once MII Should not be atter used and 'recover				empting to use $x_0 = 0$, but if red' then SC M1 A1- usually			
						see $m_1 = 1.6487$			
		Obtair	n final answer 1.895	A1					
		Show sufficient iterations to 6 sf to justify answer or show sign change in interval (1 8945 1 8955)							
		A1 [3]							
6	(i)	Use c	$\cos 2\theta = 2\cos^2 \theta - 1$ appropriately twice	B1		Alternative method			
						$\frac{1-2\sin^2\theta}{2\cos^2\theta} = \frac{1}{2}\sec^2\theta$	$e^2 \theta - \tan^2 \theta$	or	
						2	$\frac{1}{2\cos^2\theta}$ - tan	$^{2}\theta$ B	1
		Simpl	ify to confirm $1 - \frac{1}{2} \sec^2 \theta$	R1		then as for 2nd B	1		
		Shipi			[2]		-		
	(ii)	Use so	$ec^2 \alpha = 1 + tan^2 \alpha$	B 1					
		Obtair equiva	n equation $\tan^2 \alpha + 10 \tan \alpha + 25 = 0$ or alent	B1					
		Attempt solution of 3-term quadratic equation for $\tan \alpha$ and use correct process for finding value of							
		α from	n negative value of $\tan \alpha$	M1		If quadratic is incomplete of attempt to solve	ncorrect, need to see evide live as required to obtain N		nce 1
		Obtair	n 1.77	A1		Allow better or in	terms of π	$\left(\frac{1013\pi}{1800}\right)$	
					[4]				
	(iii)	State of	or imply integrand $1 - \frac{1}{2}\sec^2\frac{1}{2}x$	B1					
		Obtair	n integral of form $k_1 x - k_2 \tan \frac{1}{2} x$	M1					
		Obtair	n correct $x - \tan \frac{1}{2}x$	A1					
		Apply	limits correctly to obtain $\pi - 2$	A1	[4]				

	Pa	age 7	Mark Schem	Syllabus	Paper				
			Cambridge International AS Level –	Octob	er/N	ovember 2016	9709	22	
7	(i)	Use $\cos(\theta)$	prrect addition formula for either $+\frac{1}{6}\pi$) or, after diffn, $\sin(\theta + \frac{1}{6}\pi)$	B1		Condone 'missing	g brackets'		
		Difference $k_1 \sin \theta$ Divide Obtain	entiate to obtain $\frac{dy}{d\theta}$ of form $\theta + k_2 \cos\theta$ or $k\sin(\theta + \frac{1}{6}\pi)$ e attempt at $\frac{dy}{d\theta}$ by attempt at $\frac{dx}{d\theta}$ in $\frac{-\frac{3\sqrt{3}}{2}\sin\theta - \frac{3}{2}\cos\theta}{4\cos\theta}$ or equivalent ify to obtain $-\frac{3}{8}(1 + \sqrt{3}\tan\theta)$	M1 M1 A1 A1	[5]				
	(ii)	Identif Substi recipro Obtain Form (0,1+ Obtain	fy $\theta = 0$ tute 0 into formula for $\frac{dy}{dx}$ and take negative ocal in gradient of normal $\frac{8}{3}$ equation of normal through point $\frac{3\sqrt{3}}{2}$) in $y = \frac{8}{3}x + 1 + \frac{3\sqrt{3}}{2}$ or equivalent	B1 M1 A1 M1 A1	[5]	soi be implied by <i>y</i> = Must be from cor	$=1+\frac{3\sqrt{3}}{2} \text{ or } 3$ rect (i)	3.6	