	Page 4	Mark Scheme	Syllabus	Paper	
		Cambridge International AS Level – October/November 2016	9709	21	
1	(i)	Carry out method for solving quadratic equation in 3^x Obtain at least $3^x = 7$ Use logarithms to solve an equation of the form $3^x = k$ where $k > 0$ Obtain 1.77		M1 A1 M1 A1	[4]
	(ii)	State ±1.77, following positive answer from part (i)		B1√*	[1]
2		State or imply $\ln y = \ln A + px$ Equate gradient of line to p Obtain $p = 0.32$ Substitute to find A Obtain $A = 4.81$ OR 1: $3.17 = \ln A + 5p$ or $4.77 = \ln A + 10p$ Correct attempt to obtain $\ln A$ or p Correct attempt to obtain the other unknown Obtain $A = 4.81$ Obtain $p = 0.32$ OR 2:		B1 M1 A1 M1 A1 B1 M1 A1 A1	
		$e^{3.17} = Ae^{5p}$ or $e^{4.77} = Ae^{10p}$ Correct attempt to obtain p Correct attempt to get A Obtain $A = 4.81$ Obtain $p = 0.32$		B1 M1 M1 A1 A1	[5]
3		Differentiate to obtain $4\cos 2x + 10\sin 2x$ Equate first derivative to zero and arrange to $\tan 2x =$ Obtain $\tan 2x = -0.4$ Carry out correct method for finding at least one value of <i>x</i> , dependent *M Obtain $x = 1.38$ Obtain $x = 2.95$ and no others between 0 and π		B1 *M1 A1 DM1 A1 A1	[6]
4	(i)	Integrate to obtain $2e^{2x} + 5x$ Apply limits correctly and equate to 100 Rearrange and apply logarithms correctly to reach $a =$ Confirm given result $a = \frac{1}{2}\ln(50 + e^{-2a} - 5a)$		B1 M1 M1 A1	[4]
	(ii)	Use the iterative formula correctly at least once Obtain final answer 1.854 Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval (1.8535, 1.8545)		M1 A1 B1	[3]

	Page 5	Mark Scheme	Syllabus	Pap	oer	
		Cambridge International AS Level – October/November 2016	9709	2	1	
r						1
5	(i)	Use $\cos 2x = 2\cos^2 x - 1$ and attempt factorisation of numerator			M1	
		Obtain $(2\cos x + 1)(\cos x + 4)$			A1	
		Confirm given result $2\cos x + 1$			A1	[3]
	(ii)	Express integrand as $2\cos 2x + 1$			B1	
		Integrate to obtain $\sin 2x + x$			B1	
		Apply limits correctly to integral of form $k_1 \sin 2x + k_2 x$			M1	
		Obtain 2π			A1	[4]
		Differentiate A_{y} to obtain $A_{y} + A_{x} \frac{dy}{dy}$			D1	
0		Differentiate $4xy$ to obtain $4y + 4x \frac{1}{dx}$			BI	
		Differentiate y^2 to obtain $2y \frac{dy}{dr}$			B1	
		Equate attempt of derivative of left-hand side to zero			M1	
		Substitute (1, 3) to find numerical value of derivative			M1	
		Obtain $-\frac{18}{10}$ or $-\frac{9}{5}$			A1	
		Obtain $\frac{10}{18}$ or $\frac{5}{9}$ as gradient of normal, following their numerical value of der	ivative		A1√ [≜]	
		Form equation of normal at $(1, 3)$			M1	
		Obtain $5x - 9y + 22 = 0$ or equivalent of requested form			A1	[8]
7	(i)	Substitute $x = -2$ equate to zero and obtain $27a + 2b = 20$ or equivalent			D1	
/	(1)	Substitute $x = -3$, equate to zero and obtain $27a + 50 = 59$ of equivalent Substitute $x = -2$ and equate to 18			DI M1	
		Obtain $8a + 2b = 6$ or equivalent			A1	
		Solve a relevant pair of linear equations for a and b			M1	
		Obtain $a = 2$ and $b = -5$			A1	[5]
	(ii) (a)	Attempt division by $x + 3$ at least as far as $2x^2 + kx$			M1	
		Obtain quotient $2x^2 - 3x + 4$			A1	
		Calculate discriminant of 3-term quadratic expression, or equivalent			M1	
		Obtain –23 and conclude appropriately			A1	[4]
	(b)	State $\cos y = -\frac{1}{3}$			*B1	
		Obtain 109.5, dependent *B			B1	
		Obtain -109.5 and no others between -180 and 180, dependent *B			DB1	[3]