Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	21

1 (i)	Carry out method for solving quadratic equation in 3^{x} Obtain at least $3^{x}=7$ Use logarithms to solve an equation of the form $3^{x}=k$ where $k>0$ Obtain 1.77	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
(ii)	State ± 1.77, following positive answer from part (i)	B1 ${ }^{\wedge}$	[1]
2	State or imply $\ln y=\ln A+p x$ Equate gradient of line to p Obtain $p=0.32$ Substitute to find A Obtain $A=4.81$ OR 1: $3.17=\ln A+5 p$ or $4.77=\ln A+10 p$ Correct attempt to obtain $\ln A$ or p Correct attempt to obtain the other unknown Obtain $\quad A=4.81$ Obtain $\quad p=0.32$ OR 2: $\mathrm{e}^{3.17}=A \mathrm{e}^{5 p} \text { or } \mathrm{e}^{4.77}=A \mathrm{e}^{10 p}$ Correct attempt to obtain p Correct attempt to get A Obtain $\quad A=4.81$ Obtain $p=0.32$	B1 M1 A1 M1 A1 B1 M1 M1 A1 A1 B1 M1 M1 A1 A1	[5]
3	Differentiate to obtain $4 \cos 2 x+10 \sin 2 x$ Equate first derivative to zero and arrange to $\tan 2 x=\ldots$ Obtain $\tan 2 x=-0.4$ Carry out correct method for finding at least one value of x, dependent *M Obtain $x=1.38$ Obtain $x=2.95$ and no others between 0 and π	$\begin{array}{\|l} \text { B1 } \\ { }^{*} \text { M1 } \\ \text { A1 } \\ \text { DM1 } \\ \text { A1 } \\ \text { A1 } \end{array}$	[6]
$4 \quad$ (i)	Integrate to obtain $2 \mathrm{e}^{2 x}+5 x$ Apply limits correctly and equate to 100 Rearrange and apply logarithms correctly to reach $a=\ldots$ Confirm given result $a=\frac{1}{2} \ln \left(50+\mathrm{e}^{-2 a}-5 a\right)$	$\begin{array}{\|l\|l} \hline \text { B1 } \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[4]
(ii)	Use the iterative formula correctly at least once Obtain final answer 1.854 Show sufficient iterations to justify accuracy to 3 dp or show sign change in interval ($1.8535,1.8545$)	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \\ \text { B1 } \end{array}$	[3]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS Level - October/November 2016	9709	21

5 (i)	Use $\cos 2 x=2 \cos ^{2} x-1$ and attempt factorisation of numerator Obtain $(2 \cos x+1)(\cos x+4)$ Confirm given result $2 \cos x+1$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]
(ii)	Express integrand as $2 \cos 2 x+1$ Integrate to obtain $\sin 2 x+x$ Apply limits correctly to integral of form $k_{1} \sin 2 x+k_{2} x$ Obtain 2π	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
6	Differentiate $4 x y$ to obtain $4 y+4 x \frac{\mathrm{~d} y}{\mathrm{~d} x}$ Differentiate y^{2} to obtain $2 y \frac{\mathrm{~d} y}{\mathrm{~d} x}$ Equate attempt of derivative of left-hand side to zero Substitute $(1,3)$ to find numerical value of derivative Obtain $-\frac{18}{10}$ or $-\frac{9}{5}$ Obtain $\frac{10}{18}$ or $\frac{5}{9}$ as gradient of normal, following their numerical value of derivative Form equation of normal at $(1,3)$ Obtain $5 x-9 y+22=0$ or equivalent of requested form	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { A1§ } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[8]
$7 \quad$ (i)	Substitute $x=-3$, equate to zero and obtain $27 a+3 b=39$ or equivalent Substitute $x=-2$ and equate to 18 Obtain $8 a+2 b=6$ or equivalent Solve a relevant pair of linear equations for a and b Obtain $a=2$ and $b=-5$	$\begin{aligned} & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]
(ii) (a)	Attempt division by $x+3$ at least as far as $2 x^{2}+k x$ Obtain quotient $2 x^{2}-3 x+4$ Calculate discriminant of 3 -term quadratic expression, or equivalent Obtain -23 and conclude appropriately	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[4]
(b)	State $\cos y=-\frac{1}{3}$ Obtain 109.5, dependent *B Obtain -109.5 and no others between - 180 and 180, dependent *B	$\begin{aligned} & \text { *B1 } \\ & \text { B1 } \\ & \text { DB1 } \end{aligned}$	[3]

