	Page				Syllabus Paper
		Cambridge International AS/A Le	evel – Octo	ober/l	November 2016 9709 12
1 2 (i	i)	$(y) = 8(4x+1)^{\frac{1}{2}} \div \frac{1}{2} \div 4 (+c)$ Uses $x = 2$ and $y = 5$ c = -7 $2\sin 2x = 6\cos 2x$ $\tan 2x = k$	B1 B1 M1 A1	[4]	Correct integrand (unsimplified) without $\div 4$ $\div 4$. Ignore <i>c</i> . Substitution of correct values into an integrand to find c. $y = 4\sqrt{4x+1} - 7$ Expand and collect as far as $\tan 2x = a$ constant
		$\rightarrow \tan 2x = 3 \text{ or } k = 3$	A1	[2]	from sin ÷ cos soi cwo
(ii		$x = (\tan^{-1}(their k)) \div 2$ (71.6° or -108.4°) ÷2 x = 35.8°, -54.2° x = 0.624°, -0.946° x = 0.198π°, -0.301π°	M1 A1 A1√	[3]	Inverse then ÷2. soi. √ [*] on 1st answer +/ – 90° if in given range but no extra solutions in the given range. Both SR A1A0
3 (1	,	$2x^{2} - 6x + 5 > 13$ $2x^{2} - 6x - 8(> 0)$ (x =) -1 and 4. x > 4, x < -1	M1 A1 A1	[3]	Sets to 0 + attempts to solve Both values required Allow all recognisable notation.
(ii		$2x^{2}-6x+5=2x+k$ $\rightarrow 2x^{2}-8x+5-k(=0)$ Use of $b^{2}-4ac$ $\rightarrow -3$ OR $\frac{dy}{dx} = 4x-6$	M1* DM1 A1	[3]	Equates and sets to 0. Use of discriminant
		4x-6=2 x=2 $x=2 \rightarrow y=1$ Using their (2,1) in $y = 2x+k$ or $y = 2x^2 - 6x + 5$	M1* DM1		Sets (their $\frac{dy}{dx}$) = 2 Uses <i>their</i> $x = 2$ and <i>their</i> $y = 1$
		$\rightarrow k = -3$	A1	[3]	

	Page 5				Syllabus Paper
		Cambridge International AS/A Le	evel – Octo	ber/N	November 2016 9709 12
4	(3 T	Form in $x = \frac{nx}{2}$ $(3-2x)(1+\frac{nx}{2}+) \rightarrow 7 = \frac{3n}{2}-2$ $\rightarrow n=6$ Form in $x^2 = \frac{n(n-1)}{2} \left(\frac{x}{2}\right)^2$ Coefficient of $x^2 = \frac{3n(n-1)}{8} - \frac{2n}{2}$ $= \frac{21}{4}$	B1 M1 A1 B1 M1 A1		Could be implied by use of a numerical <i>n</i> . (Their 2 terms in x) = 7 May be implied by (their n) × (their n -1) ÷ 8. Considers 2 terms in x^2 . aef
5	M M S o	$(a, 0) \text{ and } B(0, b)$ $a^{2} + b^{2} = 100$ $A \text{ has coordinates } \left(\frac{a}{2}, \frac{b}{2}\right)$ $A \text{ lies on } 2x + y = 10$ $\rightarrow a + \frac{b}{2} = 10$ $ub \rightarrow a^{2} + (20 - 2a)^{2} = 100$ $r \left(10 - \frac{b}{2}\right)^{2} + b^{2} = 100$ $\Rightarrow a = 6, b = 8.$	B1 M1* B1√ ^ħ M1* DM1	[6]	soi Uses Pythagoras with their $A & B$. \checkmark^{\uparrow} on their A and B . Subs into given line, using their M, to link a and b . Forms quadratic in a or in b . cao

_	Page 6	Mark Sc				Syllabus	Paper
L		Cambridge International AS/A Le	evel – Octo	ber/N	November 2016	9709	12
6 (i)		$\frac{r}{D} = \sin 0.6 \text{ or } \frac{r}{10} = \cos 0.97$ $BD = \sqrt{200 - 200 \cos 1.2} (=11.3)$	M1		Or other valid alt	ernative.	
	r =	= 10×0.5646 , $r = 10 \times \sin 0.6$, = $10 \times \cos 0.971$ or $r = \frac{1}{2} BD$ r = 5.646 AG	A1	[2]			
(ii)	θ or Se	ajor arc = $10(\theta)$ (= 50.832) = $2\pi - 1.2$ (= 5.083) C = $2\pi \times 10$, Minor arc = 1.2×10 emicircle = 5.646π (= 17.737) ajor arc + semicircle	M1 B1		$\theta = 2\pi - 1.2$ or π - Implied by 5.1	- 1.2	
		68.6	A1	[3]			
(iii)		trea of major sector = $\frac{1}{2}10^2(\theta)$ (= 254.159) trea of triangle <i>OBD</i>	M1		$\theta = 2\pi - 1.2$ or π -	- 1.2	
		$= \frac{1}{210^{2} \sin 1.2} (= 46.602)$ rea = semicircle + sector + triangle (= 50.1 + 254.2 + 46.6)	M1		Use of ½ <i>ab</i> sin <i>C</i> of	or other comp	olete method
		= 351	A1	[3]			
7 (i)	$\frac{dy}{dy}$	$\frac{w}{x} = \frac{-3}{\left(2x-1\right)^2} \times 2$	B1 B1	[2]	B1 for a single conwithout ×2.	rect term (ur	nsimplified)
(ii)	e.§	g. Solve for $\frac{dy}{dx} = 0$ is impossible.	B1√^	[1]	Satisfactory expla	nation.	
(iii)	If	$x = 2, \ \frac{dy}{dx} = \frac{-6}{9} \ \text{and} \ y = 3$	M1*		Attempt at both n	eeded.	
		erpendicular has $m = \frac{9}{6}$	M1*		Use of $m_1m_2 = -1$	numerically	
		$y-3 = \frac{3}{2}(x-2)$ nows when x=0 then y=0 AG	DM1 A1		Line equation using	ng (2, their 3) and their <i>m</i> .
		10 ws when x = 0 then y = 0 AU		[4]			
(iv)		$\frac{dx}{dt} = -0.06$ $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt} \rightarrow -\frac{2}{3} \times -0.06 = 0.04$	M1 A1	[2]			

	Ρ	age			Scheme			Syllabus	Paper	
				Cambridge International AS/A Level – October/Novembe				9709	12	
8	(a)		200 + = 130	+(15-1)(+/-5) 0	M1 A1	[2]	Use of <i>n</i> th term w $d = \pm - 5$.	with $a = 200$,	<i>n</i> = 14 or 1	5and
	(00 + (n-1)(+/-5)] = (3050) $5n^{2} - 405n + 6100 \ (= 0)$ 0	M1 A1 A1	[3]	Use of S_n $a=200$	and $d = +/-3$	5.	
	(b)			$ar^{5} \rightarrow r = \frac{1}{2}$ $= \frac{a(1 - \frac{1}{2}^{6})}{\frac{1}{2}} \rightarrow a = 16$	M1 A1 M1 A1	[4]	Both terms correct Use of $S_n = 31.5$ v		ic <i>r</i> .	
		(ii)	Sum	to infinity = $\frac{16}{\frac{1}{2}}$ = 32	B1√ [^]	[1]	\checkmark for their <i>a</i> and <i>r</i>	with $ r <$	1.	
9	(i)		$\sqrt{x_1^2}$ 3×7	6 - 6 = -16 + $y_1^2 + z_1^2$ or $\sqrt{x_2^2 + y_2^2 + z_2^2}$ $y \times \cos \theta = -16$ $\theta = 139.6^\circ$ or 2.44° or 0.776 π	M1 M1 M1 A1	[4]	Use of $x_1x_2 + y_1y_2$ Modulus once on All linked using th	either their	\overrightarrow{OA} or \overrightarrow{OB}	3
	(ii)		Mag	$= c - a = \begin{pmatrix} 0 \\ 8 \\ 6 \end{pmatrix}$ nitude = 10 ng $\rightarrow \frac{15}{their10} \times \begin{pmatrix} 0 \\ 8 \\ 6 \end{pmatrix} = \begin{pmatrix} 0 \\ 12 \\ 9 \end{pmatrix}$	B1 M1 A1	[3]	For 15 × <i>their</i> uni	t vector.		
	(iii)		$\begin{pmatrix} 2+\\ 6-\\ 5-\\ -2 \end{pmatrix} \rightarrow p$	2p 2p 2p p p 2(2+2p) + 3(6-2p) + 6(5-p) = 0 = 23/4	B1 M1 A1	[3]	Single vector soi I Dot product of (<i>p</i>			0.

Pa	ige 8	Mark	Scheme			Syllabus	Paper]
		Cambridge International AS/A	Level - Oct	ober/l	November 2016	9709	12]
10 (i)	3 ≤	$\leq f(x) \leq 7$	B1 B1	[2]	Identifying both 3 and 7 or correctly stating on inequality. Completely correct statement. NB $3 \le x \le 7$ scores B1B0			ig one
(ii)			B1* DB1	[2]	One complete osc between 0 and π . All correct, initial f(x)=0			
(iii)	$ \rightarrow \\ 0.5 \\ \underline{\pi} + $	$\sin 2x = 6 \rightarrow \sin 2x = -\frac{1}{2}$ $2x = \frac{7\pi}{6} \text{ or } \frac{11\pi}{6}$ $x = \frac{7\pi}{12} \text{ or } \frac{11\pi}{12}$ $83\pi \text{ or } 0.917\pi$ $-\frac{0.524}{2} \text{ or } \frac{2\pi - 0.524}{2}$ $3^{\circ} \text{ or } 2.88^{\circ}$	M1 A1 A1√ [*]	[3]	Make sin2x the su $\sqrt[n]{}$ for $\frac{3\pi}{2} - 1^{st}$ ari in given range SR A1A0 for both	nswer from si	$n2x = -\frac{1}{2}$ or	nly, if
(iv)	k=	$\frac{\pi}{4}$	B1	[1]				
(v)		$\ln 2x = 5 - y \to \sin 2x = \frac{1}{2}(5 - y)$ $\ln(x) = \frac{1}{2} \sin^{-1} \frac{(5 - x)}{2}$	M1 M1 A1	[3]	Makes ±sin2x the Correct order of c dealing with " – " Must be a functio	pperations ind	•	