Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	11

1 (i)	$(x+3)^{2}-7$	B1B1	[2]	For $a=3, b=-7$
(ii)	$\begin{aligned} & 1,-7 \text { seen } \\ & x>1, \quad x<-7 \quad \text { oe } \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	$x>1 \text { or } x<-7$ Allow $x \leqslant-7, x \geqslant 1$ oe
2	$8 \mathrm{C} 6(2 x)^{6}\left(\frac{1}{2 x^{3}}\right)^{2}$ soi $28 \times 64 \times \frac{1}{4}$ oe (powers and factorials evaluated) 448	B1 B2,1,0 B1	[4]	May be seen within a number of terms May be seen within a number of terms Identified as answer
3 (i)	$\begin{aligned} & 2 r \alpha+r \alpha+2 r=4.4 r \\ & \alpha=0.8 \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	[2]	At least 3 of the 4 terms required
(ii)	$\begin{aligned} & 1 / 2(2 r)^{2} 0.8-1 / 2\left(r^{2}\right) 0.8=30 \\ & (3 / 2) r^{2} \times 0.8=30 \rightarrow r=5 \end{aligned}$	$\begin{aligned} & \text { M1A1 } \downarrow \\ & \text { A1 } \end{aligned}$	[3]	Ft through on their α
$4 \quad$ (i)	$\begin{aligned} & C=(4,-2) \\ & m_{A B}=-1 / 2 \rightarrow m_{C D}=2 \end{aligned}$ Equation of $C D$ is $y+2=2(x-4)$ oe $y=2 x-10$	$\begin{array}{\|l\|l} \hline \mathbf{B 1} \\ \text { M1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[4]	Use of $m_{1} m_{2}=-1$ on their $m_{A B}$ Use of their C and $m_{C D}$ in a line equation
(ii)	$\begin{aligned} & A D^{2}=(14-0)^{2}+(-7-(-10))^{2} \\ & A D=14.3 \text { or } \sqrt{ } 205 \end{aligned}$	$\begin{array}{\|l\|} \text { M1 } \\ \text { A1 } \end{array}$	[2]	Use their D in a correct method
5	$\begin{aligned} & a(1+r)=50 \text { or } \frac{a\left(1-r^{2}\right)}{1-r}=50 \\ & a r(1+r)=30 \text { or } \frac{a\left(1-r^{3}\right)}{1-r}=30+a \end{aligned}$ Eliminating a or r $\begin{array}{ll} r=3 / 5 & \\ a=125 / 4 & \text { oe } \\ S=625 / 8 & \text { oe } \end{array}$	B1 B1 M1 A1 A1 A1 ${ }^{\wedge}$	[6]	Or otherwise attempt to solve for r Any correct method Ft through on their r and a $(-1<r<1)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	11

6 (i)	$\cos ^{4} x=\left(1-\sin ^{2} x\right)^{2} \quad=1-2 \sin ^{2} x+\sin ^{4} x \quad$ AG	B1	[1]	Could be LHS to RHS or vice versa
(ii)	$\begin{aligned} & 8 \sin ^{4} x+1-2 \sin ^{2} x+\sin ^{4} x=2\left(1-\sin ^{2} x\right) \\ & 9 \sin ^{4} x=1 \\ & \left.x=35.3^{\circ} \quad \text { (or any correct solution }\right) \end{aligned}$ Any correct second solution from $144.7^{\circ}, 215.3^{\circ}$, 324.7° The remaining 2 solutions	$\begin{array}{\|l} \text { M1 } \\ \text { A1 } \\ \text { A1 } \\ \\ \text { A1^ } \\ \text { A1 } \end{array}$	[5]	Substitute for $\cos ^{4} x$ and $\cos ^{2} x$ or OR sub for $\sin ^{4} x \rightarrow 3 \cos ^{2} x=2$ $\rightarrow \cos x=(\pm) \sqrt{2 / 3}$ Allow the first $2 \mathbf{A 1}$ marks for radians $(0.616,2.53,3.76,5.67)$
$7 \quad$ (i)	$A=(1 / 2,0)$	B1	[1]	Accept $x=0$ at $y=0$
(ii)	$\begin{aligned} & \int(1-2 x)^{\frac{1}{2}} \mathrm{~d} x=\left[\frac{(1-2 x)^{3 / 2}}{3 / 2}\right][\div(-2)] \\ & \int(2 x-1)^{2} \mathrm{~d} x=\left[\frac{(2 x-1)^{3}}{3}\right][\div 2] \\ & {[0-(-1 / 3)]-[0-(-1 / 6)]} \\ & 1 / 6 \end{aligned}$	B1B1 B1B1 M1 A1	[6]	May be seen in a single expression May use $\int_{a}^{1} x \mathrm{~d} y$, may expand $(2 x-1)^{2}$ Correct use of their limits
8 (i)	$\operatorname{fg}(x)=5 x$ Range of fg is $y \geqslant 0$ oe	$\begin{array}{\|l} \text { M1A1 } \\ \text { B1 } \end{array}$	[3]	only Accept $y>0$
(ii)	$y=4 /(5 x+2) \Rightarrow x=(4-2 y) / 5 y \quad$ oe $\mathrm{g}^{-1}(x)=(4-2 x) / 5 x \quad$ oe 0,2 with no incorrect inequality $0<x \leqslant 2$ oe, c.a.o.	$\begin{array}{\|l} \text { M1 } \\ \mathbf{A 1} \\ \mathbf{B 1 , B 1} \\ \mathbf{B 1} \\ \hline \end{array}$	[5]	Must be a function of x
$9 \quad$ (i)	$\begin{aligned} & \mathbf{X P}=-4 \mathbf{i}+(p-5) \mathbf{j}+2 \mathbf{k} \\ & {[-4 \mathbf{i}+(p-5) \mathbf{j}+2 \mathbf{k}] \cdot(p \mathbf{j}+2 \mathbf{k})=0} \\ & p^{2}-5 p+4=0 \\ & p=1 \text { or } 4 \end{aligned}$	$\begin{array}{\|l\|l} \hline \text { B1 } \\ \text { M1 } \\ \\ \text { A1 } \\ \text { A1 } \end{array}$	[4]	Or $\mathbf{P X}$ Attempt scalar prod with OP/PO and set $=0$ ($=0$ could be implied)
(ii)	$\begin{aligned} & \mathbf{X P}=-4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k} \rightarrow\|\mathbf{X P}\|=\sqrt{16+16+4} \\ & \text { Unit vector }=1 / 6(-4 \mathbf{i}+4 \mathbf{j}+2 \mathbf{k}) \quad \text { oe } \end{aligned}$	$\begin{array}{\|l\|} \hline \text { M1 } \\ \text { A1 } \end{array}$	[2]	Expect 6
(iii)	$\begin{aligned} & \mathbf{A G}=-4 \mathbf{i}+15 \mathbf{j}+2 \mathbf{k} \\ & \mathbf{X Q}=\lambda \mathbf{A G} \text { soi } \\ & \lambda=2 / 3 \rightarrow \mathbf{X Q}=-\frac{8}{3} \mathbf{i}+10 \mathbf{j}+\frac{4}{3} \mathbf{k} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { B1 } \\ \text { M1 } \\ \text { A1 } \end{array}$	[3]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2016	9709	11

10 (i)	$\begin{aligned} & 3 z-\frac{2}{z}=-1 \Rightarrow 3 z^{2}+z-2=0 \\ & x^{1 / 2}(\text { or } z)=2 / 3 \text { or }-1 \\ & x=4 / 9 \text { only } \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \end{aligned}$	[3]	Express as 3-term quad. Accept $x^{1 / 2}$ for z (OR $\begin{aligned} & 3 x-1=-\sqrt{x}, 9 x^{2}-13 x+4=0 \\ & \text { M1, A1, A1 } x=4 / 9 \text {) } \end{aligned}$
(ii)	$\mathrm{f}(x)=\frac{33^{3 / 2}}{3 / 2}-\frac{2 x^{1 / 2}}{1 / 2} \quad(+c)$ Sub $x=4, y=10 \quad 10=16-8+c \quad \Rightarrow \quad c=2$ When $x=\frac{4}{9}, y=2\left(\frac{4}{9}\right)^{3 / 2}-4\left(\frac{4}{9}\right)^{1 / 2}+2$ $-2 / 27$	$\begin{aligned} & \text { B1B1 } \\ & \text { M1A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[6]	c must be present Substituting x value from part (i)
11 (i)	$\begin{aligned} & \frac{\mathrm{d} y}{\mathrm{~d} x}=-(x-1)^{-2}+9(x-5)^{-2} \\ & m_{\text {tangent }}=-\frac{1}{4}+\frac{9}{4}=2 \end{aligned}$ Equation of normal is $y-5=-1 / 2(x-3)$ $x=13$	$\begin{aligned} & \text { M1A1 } \\ & \text { B1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	[5]	May be seen in part (ii) Through (3, 5) and with $m=-1 / m_{\text {tangent }}$
(ii)	$\begin{aligned} & (x-5)^{2}=9(x-1)^{2} \\ & x-5=(\pm) 3(x-1) \text { or }(8)\left(x^{2}-x-2\right)=0 \\ & x=-1 \text { or } 2 \\ & \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2(x-1)^{-3}-18(x-5)^{-3} \end{aligned}$ When $x=-1, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{1}{6}<0 \quad$ MAX When $x=2, \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=\frac{8}{3}>0 \quad$ MIN	B1 M1 A1 B1 B1 B1	[6]	Set $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ and simplify Simplify further and attempt solution If change of sign used, x values close to the roots must be used and all must be correct

