Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

1 (i)	$\begin{aligned} & \mathrm{N}(352, \ldots) \\ & \text { Variance = } 2.9 \end{aligned}$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	no recovery in (ii) for each B mark accept sd $=\sqrt{ } 2.9=1.70(29)$ stated
(ii)	$\begin{aligned} & \frac{354-352}{\sqrt{2.9}} \\ & 1-\Phi\left({ }^{\prime} 1.174^{\prime}\right) \\ & =0.120(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1	[3]	with their mean and var Or $\frac{354.05-352}{\sqrt{2.9}}$ or correct restart $(=1.204)$ (accept sd/var mix) 1 $\begin{aligned} &-\Phi\left({ }^{(} 1.204\right. \\ &=0.114(3 \mathrm{sf}) \end{aligned}$ Incorrect cc can score M1M1A0
Total			[5]	
2	$\left(\Phi^{-1}(0.99)=\right) 2.326 \text { seen }$ $\mathrm{N}(\lambda, \lambda)$ seen or implied $\frac{55.5-\lambda}{\sqrt{\lambda}}=+" 2.326 "$ $\begin{aligned} & \lambda+" 2.326 " \sqrt{\lambda}-55.5=0 \\ & \sqrt{\lambda}=\frac{-" 2.326 " \pm \sqrt{" 2.326 " 2}+4 \times 55.5}{2} \\ & (=6.377 . . \text { or }-8.703 . .)) \\ & \lambda=40.7(3 \mathrm{sf}) \end{aligned}$	B1 M1 M1 M1 A1	[5]	must be $\Phi^{-1}, \operatorname{not} \Phi$ allow with wrong or no cc \& $\Phi(0.99)$ (= 0.8389) must $=$ " z " or attempt at z (0.99 / 0.01 M 0) for correct method of solving their quad in $\sqrt{ } \lambda$ and squaring to find λ cao, one ans only Without $\mathrm{cc}, \lambda=40.2$: lose final A1
Total			[5]	
3 (i)	0.4 or $2 / 5$ or $26 / 65$	B1	[1]	no recovery in (ii) for the B mark
(ii)	$\begin{aligned} & " 0.4 "+z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.516 \mathrm{oe} \\ & z=\left(0.116 \times \sqrt{\frac{65}{0.4 \times 0.6}}\right)=1.909 \\ & \left(\Phi\left({ }^{‘} 1.909^{\prime}\right)=0.97(18)\right) \\ & 2\left({ }^{\prime} 0.977^{\prime}-1\right) \\ & \alpha=94 \end{aligned}$	M1 A1 M1 A1	[4]	$\begin{aligned} & \text { or " } 0.4 \text { " }-z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.284 \text { or } \\ & z \times \sqrt{\frac{0.4 \times 0.6}{65}}=0.116 \mathrm{oe} \end{aligned}$ for fully correct method to find α from their Z allow 94.36 or 94.4 or 94.374
Total			[5]	

Page 5 Mark Scheme

4 (i)	$\begin{aligned} & k \int_{-2}^{2}\left(4-x^{2}\right) \mathrm{d} x=1 \\ & k\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{2}=1 \\ & \left(k\left(8-\frac{8}{3}-\left(-8-\left(-\frac{8}{3}\right)=1\right)\right)\right) \\ & k \times \frac{32}{3}=1 \text { oe Not e.g. } k \times 10.7=k \\ & k=\frac{3}{32} \mathbf{A G} \end{aligned}$	M1 A1 A1	[3]	attempt Integral $\mathrm{f}(x)=1$, ignore limits correct integration \& limits exact answer correctly found
(ii)	Inverted parabola, vertex on y axis $\mathrm{E}(X)=0$	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	[2]	parabola must finish on x axis at ± 2, labelled (ignore markings on y axis)
(iii)	$\begin{aligned} & \frac{3}{32} \int_{-2}^{1}\left(4-x^{2}\right) \mathrm{d} x \\ & \frac{3}{32}\left[4 x-\frac{x^{3}}{3}\right]_{-2}^{1} \\ & \frac{3}{32}\left(4-\frac{1}{3}-\left(-8-\left(-\frac{8}{3}\right)\right)\right. \\ & =\frac{27}{32} \text { or } 0.844(3 \mathrm{sf}) \end{aligned}$	M1 A1 A1	[3]	or $1-\frac{3}{32} \int_{1}^{2}\left(4-x^{2}\right) \mathrm{d} x \quad$ ignore limits or $1-\frac{3}{32}\left[4 x-\frac{x^{3}}{3}\right]_{1}^{2}$ correct integration and correct limits $=1-\frac{3}{32}\left(8-\frac{8}{3}-\left(4-\frac{1}{3}\right)\right.$
Total			[8]	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

5 (a)	$\begin{array}{ll} \lambda=4.5 & (=0.011109) \\ \mathrm{e}^{-4.5} & (=0.010860) \\ \left(\frac{99}{100}\right)^{450} & \\ \left.\frac{\left(0.011109^{\prime}--^{\prime} 0.010860^{\prime}\right.}{0.010860} \times 100\right) \\ =2.29 \%(3 \mathrm{sf}) & \end{array}$	B1 M1 M1 A1	[4]	alone allow any λ
(b)	$\begin{aligned} & \mathrm{H}_{0}: \mathrm{P}(6)=\frac{1}{6} \text { or } p=\frac{1}{6} \\ & \mathrm{H}_{1}: \mathrm{P}(6)<\frac{1}{6} \text { or } p<\frac{1}{6} \\ & \left(\frac{5}{6}\right)^{25}+25\left(\frac{5}{6}\right)^{24} \times \frac{1}{6}+{ }^{25} \mathrm{C}_{2}\left(\frac{5}{6}\right)^{23} \times\left(\frac{1}{6}\right)^{2} \\ & =0.189(3 \mathrm{sf}) \\ & \operatorname{comp} 0.1 \end{aligned}$ No reason to believe die biased	B1 M1 A1 M1 A1	[5]	Both needed allow one error (extra term/missing term / incorrect term) CR method: attempt at least $\mathrm{P}(0)$ and $\mathrm{P}(0$ and 1) $(0.010 \ldots$ and $0.06 \ldots<0.1)$ CR is 0,1 and must see 0.189 for A1 valid comp ' 0.189 ' with 0.1 oe valid comparison of 2 with CR correct conclusion, \downarrow their 0.189 no contradictions
Total			[9]	
6 (i)	$\begin{aligned} & \text { Нo: } \mu=2.60 \\ & \mathrm{H}_{1}: \mu>2.60 \\ & \pm \frac{2.64-2.6}{0.2 \div \sqrt{75}} \\ & = \pm 1.732 \end{aligned}$ $\text { ' } 1.732 \text { ' > } 1.645$ Reject Ho. There is evidence that μ has increased	B1 M1 A1 B1 ^	[4]	allow pop mean, not just 'mean' $\text { accept } \pm 1.73(3 \mathrm{sf})$ valid comparison with 1.645 (or $0.0416<0.05$) and correct conclusion \downarrow their 1.732 no contradictions (or CV method $\mathrm{x}_{\text {crit }}=2.638 \mathrm{M} 1 \mathrm{~A} 1$ comp $2.64>2.638$ and concln B1 \downarrow) SR two tail test, using 1.96 (or using 0.025) can score B0M1A1B1ft max 3/4

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	73

(ii)	$\begin{aligned} & \frac{x-2.6}{0.2 \div \sqrt{75}}=1.645 \quad(x=2.638) \\ & \pm \frac{{ }^{2} .638^{\prime}-2.68}{0.2 \div \sqrt{75}} \\ & = \pm 1.819 \\ & \Phi\left({ }^{{f1cb23fab-5eff-4191-8631-23d98cf7290d}} 0.00013232, \\ & =0.000276(32) \\ & \frac{0.01-^{\prime} 0.033^{\prime}}{\sqrt{ } 0.00027632^{\prime}} \quad(=-1.384) \\ & \Phi\left({ }^{{ff55542f6-d81f-42c6-ade0-1b0029b6a44d}}\right)=1-\Phi\left({ }^{{f74f3d191-e4f3-42a3-946b-13cb40987e04}}\right) \\ & =0.0832 \end{aligned}$	B1 M1 A1 M1 M1 A1	[6]	or $2.12-2.087-0.01$ for $\mathrm{Y}-\mathrm{X}-0.01<$ 0 allow 2.09 for 2.087 $\text { or } \sqrt{ }\left(0.012^{2}+{ }^{{fcac9f84e-0eae-4421-a63c-0e317caccf8a}\right)$ $=0.016623$ \checkmark their $\mathrm{E}(Y-X) \& \operatorname{Var}(Y-X)$ var must be a combination of the two vars correct area/prob consistent with their working SR use of biased var (0.000131) in (i) and (ii) scores in (ii) B1M1 A1 for 0.000275 and M1M1 A1 for 0.0827 ($6 / 6$ available)
Total			[9]	
	Total for paper		[50]	

