Page 4	Mark Sche	Syllabus Paper				
	Cambridge International A Level – October/November 2015			rember 2015 9709 73		
1 (i)	N(352,) Variance = 2.9	B1 B1	[2]	no recovery in (ii) for each B mark accept sd = $\sqrt{2.9} = 1.70(29)$ stated		
(ii)	$\frac{354 - 352}{\sqrt{2.9}} \qquad (= 1.174)$	M1		with their mean and var Or $\frac{354.05 - 352}{\sqrt{2.9}}$ or correct restart (= 1.204)		
	1 – Φ('1.174')	M1		(accept sd/var mix)1 $-\Phi((1.204'))$ = 0.114 (3 sf)		
	= 0.120 (3 sf)	A1	Incorrect cc can score M1M1A0			
Total			[5]			
2	$(\Phi^{-1}(0.99) =) 2.326$ seen $N(\lambda, \lambda)$ seen or implied	B1 M1		must be Φ^{-1} , not Φ allow with wrong or no cc & $\Phi(0.99)$ (= 0.8389) must = " z " or attempt at z (0.99 / 0.01 M0) for correct method of solving their quad in $\sqrt{\lambda}$ and squaring to find λ cao, one ans only Without cc, $\lambda = 40.2$: lose final A1		
	$\frac{55.5 - \lambda}{\sqrt{\lambda}} = + "2.326"$	M1				
	$\sqrt{\lambda} = \frac{-"2.326" \pm \sqrt{"2.326"^2 + 4 \times 55.5}}{2}$ $(= 6.377 \text{ or} - 8.703))$	M1				
	$\lambda = 40.7 (3 \text{ sf})$	A1	[5]			
Total			[5]			
3 (i)	0.4 or 2/5 or 26/65	B1	[1]	no recovery in (ii) for the B mark		
(ii)	" 0.4 " + $z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.516$ oe	M1		or " 0.4 " $-z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.284$ or		
	$z = \left(0.116 \times \sqrt{\frac{65}{0.4 \times 0.6}}\right) = 1.909$	A1		$z \times \sqrt{\frac{0.4 \times 0.6}{65}} = 0.116$ oe		
	$(\Phi(`1.909') = 0.97(18))$ 2 (`0.97' - 1)	M1	Γ4٦	for fully correct method to find α from their z		
	$\alpha = 94$	Al	[4]	allow 94.36 or 94.4 or 94.374		
Total			[5]			

[Page 5	Mark Scheme					Paper	
		Cambridge International A Level – October/November 2015				9709	73	
					1			
4	(i)	$k \int_{-2}^{2} (4 - x^2) \mathrm{d}x = 1$	M1		attempt Integral	tempt Integral $f(x) = 1$, ignore limits		
		$k[4x - \frac{x^3}{3}]_{-2}^2 = 1$	A1		correct integration & limits			
		$\left(k\left(8-\frac{8}{3}-\left(-8-\left(-\frac{8}{3}\right)=1\right)\right)\right)$						
		$k \times \frac{32}{3} = 1$ oe Not e.g. $k \times 10.7 = k$						
		$k = \frac{3}{32} \mathbf{AG}$	A1	[3]	exact answer co	rrectly found	l	
	(ii)	Inverted parabola, vertex on y axis	B1		parabola must finish on x axis at ± 2 ,			
		$\mathrm{E}(X)=0$	B1	[2]				
	(iii)	$\frac{3}{32}\int_{-2}^{1}(4-x^2)\mathrm{d}x$	M1		or $1 - \frac{3}{32} \int_{1}^{2} (4 - $	x^2)dx	ignore limits	
		$\frac{3}{32} \left[4x - \frac{x^3}{3}\right]_{-2}^{1}$	A1		or $1 - \frac{3}{32} [4x - $	$\frac{x^3}{3}\Big]_1^2$		
		$\frac{3}{32} \left(4 - \frac{1}{3} - \left(-8 - \left(-\frac{8}{3}\right)\right)\right)$			correct integrati = $1 - \frac{3}{32}(8 - \frac{8}{3})$	on and correct $-(4-\frac{1}{3})$	ct limits	
		$=\frac{27}{32}$ or 0.844 (3 sf)	A1	[3]	52 3	5		
Т	`otal			[8]				

	Page 6	Mark Schei	Syllabus	Paper			
		Cambridge International A Level – October/November 2015			9709	73	
5	(a)	$\begin{array}{l}\lambda = 4.5\\ e^{-4.5} \qquad (= 0.011109)\\ (= 0.011109)\end{array}$	B1 M1		alone allow any λ		
		$ \left(\frac{99}{100}\right)^{100} = 0.010860) $ $ \left(\frac{0.011109' - 0.010860'}{0.010860} \times 100\right) $	M1				
		= 2.29% (3 sf)	A1	[4]			
	(b)	H ₀ : P(6) = $\frac{1}{6}$ or $p = \frac{1}{6}$ H ₁ : P(6) < $\frac{1}{6}$ or $p < \frac{1}{6}$	B1		Both needed		
		$\left(\frac{5}{6}\right)^{25} + 25\left(\frac{5}{6}\right)^{24} \times \frac{1}{6} + {}^{25}C_2\left(\frac{5}{6}\right)^{23} \times \left(\frac{1}{6}\right)^2$	M1		allow one error (extra term/missing term / incorrect term) CR method: attempt at least P(0) and P(0 and 1) (0.010 and 0.06 < 0.1)		
		= 0.189 (3 sf)	A1		CR is 0,1 and must see 0.189 for A1		
		comp 0.1	M1		valid comp '0.189' with 0.1 oe valid comparison of 2 with CR		
		No reason to believe die biased	A1	[5]	correct conclusion, $\sqrt[4]{}$ their 0.189 no contradictions		
Т	otal			[9]			
6	(i)	Ho: $\mu = 2.60$ H ₁ : $\mu > 2.60$	B 1		allow pop mean	, not just 'me	ean'
		$ \pm \frac{2.64 - 2.6}{0.2 \div \sqrt{75}} $ = \pm 1.732	M1 A1		accept ± 1.73 (3 sf)		
		'1.732' > 1.645 Reject Ho. There is evidence that μ has increased	B1 √ [^]	[4]	valid compariso (or 0.0416 < 0.0 and correct component contradiction (or CV method comp 2.64 > 2.6	on with 1.645 05) clusion $\sqrt[n]{}$ the ns $x_{crit} = 2.638$ 538 and conc	ir 1.732 M1A1 ln B1 √*)
					SR two tail test, 0.025) can scor	, using 1.96 (e B0M1A1B	or using 1ft max 3/4

Page 7	Mark Sche	Syllabus	Paper			
	Cambridge International A Level – October/November 2015			9709	73	
	I		1			
(ii)	$\frac{x-2.6}{0.2 \div \sqrt{75}} = 1.645 \qquad (x = 2.638)$	M1				
	$\pm \frac{2.038 - 2.08}{0.2 \div \sqrt{75}}$	M1		for standardising with their " 2.638 " using 2.68		
	$= \pm 1.819$	A1		accept 1.82 (3 sf)		
	$\Phi(`-1.819') = 1 - \Phi(`1.819')$	M1		indep M mark, calculate correct area/prob consistent with their working		
	= 0.0345 or 0.0344	A1	[5]			
Total			[9]			
7 (i)	$est \mu = 2.087$	B 1		allow 2.09		
	est $\sigma^2 = \frac{100}{99} \left(\frac{435.57}{100} - 2.087^2 \right)$	M1		1/99 (435.57 - 208.7 ² /100)		
	= 0.000132(3232) or 131/990000	A1	[3]	without $\frac{100}{99}$: 0.000131 M0A0		
(ii)	E(Y-X) = 2.12 - 2.087 (= 0.033)	B 1		or 2.12 – 2.087 – 0.01 for Y – X – 0.01 < 0 allow 2.09 for 2.087		
	Var(Y-X) = 0.000144 + `0.00013232' = 0.000276(32)	M1 A1		or $\sqrt{(0.012^2 + `0)}$ = 0.016623	0.00013232')	M1 A1
	$\frac{0.01-0.033'}{\sqrt{0.00027632'}} \qquad (=-1.384)$	M1				
	$\Phi(`-1.384') = 1 - \Phi(`1.384')$	M1		correct area/prob consistent with their		
	= 0.0832	A1	[6]	working SR use of biased var (0.000131) in (i) and (ii) scores in (ii) B1M1 A1 for 0.000275		
				and M1M1 A1 t (6/6 available)	for 0.0827	
Total			[9]			
-						
	Total for paper		[50]			