	Page 4	Mark Scheme		Syllabus	Paper			
		Cambridge International A Level – October/November 2015					72	
1		$\lambda = (1.2 + 2.3) \div 2$	M1		Attempt com	bined mean,	allow 1.2 +	- 2.3
		= 1.75	A1		Correct mean	1		
		$e^{-1.75}\left(\frac{1.75^2}{2}+\frac{1.75^3}{3!}\right)$	M1 Allow inco			rrect mean. errors (1 and/or 4)		
		= 0.421 (3 sf)	A1 [4]			1010 (1 4114/0)	
			Total: 4					
2	(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1		Or 6 ² /120 oe	seen		
		$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \qquad (=1.826)$	M1		± Allow withou	ut √120. No s	sd/var mix	
		$P(z > `1.826') = 1 - \Phi(`1.826')$ = 0.034 (2 sf)	M1 A1	[4]	Correct tail c working 0.0339	onsistent wit	h their	
	(ii)	No n is large (\geq 30)	B1		1 st B1 for eith	ner comment		
		Sample mean is (appr) normally distrib or The CLT applies oe	B1	[2]	2 nd B1 for'No (No mark for	o'with 2 nd co 'No' alone)	mment	
			Tota	l: 6				
3	(i)	$\frac{3420}{60}(=57)$	B1					
		$\frac{60}{59} \left(\frac{195200}{60} - 57^{\prime 2} \right) \qquad (= 4.40678)$	M1		Oe			
		1.1 (3.51)	A1	[3]	As final answ	/er		
	(ii)	$57'\pm z\sqrt{\frac{4.40678'}{60}}$	M1					
		<i>z</i> = 2.326	B1		2.326 - 2.329) (accept 2.3.	3 if no bette	er
		[56.4 to 57.6] (3 sf)	A1	[3]	seen) NB: use of bi score in full	ased varianc	e in (ii) can	1
			Total: 6					_

	Page 5	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – Oc	9709	72		
r			Γ	Γ		
4	(i)	$k\int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int \mathbf{f}(x)$ $\frac{k}{2}(\mathbf{h}_1 + \mathbf{h}_2) =$	= 1, ignore l 1	imits or
		$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1	Correct integration & limits or $\frac{k}{2}(2+1) = 1$		
		(k(6-2-(3-0.5)) = 1) $k \times 1.5 = 1 \text{ or } k \times \frac{3}{2} = 1 \text{ or } k = \frac{1}{1.5} \text{ oe}$				
		$k = \frac{2}{3} \text{ AG}$	A1 [3]	No errors see	n	
	(ii)	$\frac{2}{3} \int_{1}^{m} (3-x) dx = 0.5$ oe \int from m to 2	M1*	Attempt Int f	(x) = 0.5, ign	ore limits oe
		$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$		Or use of area	a of trapeziu	m
		$\frac{2}{3} \left[3m - \frac{m^2}{2} - 2.5 \right] = 0.5$	dep M1*	Sub of correc Or trapezium Any correct 3 =2.5	t limits into using 1 and term QE =	their integral. m/m and 2 0 or (m–3) ²
		$m^2 - 6m + 6.5 = 0$ oe	A1			
		$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ oe	; single corre	ect ans
			Total: 7			

	Page 6	Mark Scheme					s Paper	
		Cambridge International A Level – O	nber 2015	9709	72	J		
5	(i)	Po(1.6) stated or implied	M1					
		$P(X > 3) = 1 - e^{-1.6} \left(1 + 1.6 + \frac{1.6^2}{2} + \frac{1.6^3}{3!} \right)$	M1		Allow M1 for $1 - P(X \leq 3)$, incorrect and allow one end error			λ
		= 0.0788 (3 sf)	A1	[3]	SR Use of Bin scores B1 only for 0.0			
	(ii)	$\lambda = \frac{n}{2500}$ $e^{-\frac{n}{2500}} < 0.05 \qquad \text{Allow} =$	B1 M1		$e^{-\mu} < 0.05$	M1 $\frac{2}{2}$	$\frac{2499}{500}$ E	31
		Allow incorrect λ					$\left(\frac{2499}{2500}\right) < 0.05$	5 11
		$-\frac{n}{2500} < \ln 0.05$ Attempt ln bs n > 7489.3 (1 dp)	M1		$-\mu < \ln 0.05$ ($\mu > 2.9957$)	M1 <i>n</i>	$\ln \frac{2499}{2500} < \ln 0.0$	05 [1
		Smallest $n = 7490$	A1	[4]	$n = \mu \times 2500$ Smallest $n = 1$	B1 Si 7490 A1	mallest $n = 748$ A	88 \1
			Tota	l: 7				
6	(i)	$E(T) = 9 \times 78 + 7 \times 66$ (= 1164)	B 1		Or $9 \times 78 + 7$	× 66 – 12	200	
		$Var(T) = 9 \times 7^{2} + 7 \times 5^{2} (= 616)$ $\frac{1200 - 1164'}{\sqrt{616'}} (= 1.450)$	B1 M1		± Allow with	out √		
		$P(z < 1.450) = \Phi (1.450)$ = 0.927 (3 sf)	M1 A1	[5]	Correct tail co	onsistent v	vith their mean	1
	(ii)	$E(D) = 66 - 78 \qquad (= -12)$	B 1		Both needed			
		$Var(D) = 7^2 + 5^2$ (= 74)						
		$\frac{0 - ('-12')}{\sqrt{74}} \qquad (= 1.395)$	M1		\pm Allow with	out √		
		$P(D > 0) = 1 - \Phi$ ('1.395') 0.0815 (3 sf)	$> 0) = 1 - \Phi$ ('1.395') 15 (3 sf) M1 A1		Correct tail co Similar schen	prrect tail consistent with their mean milar scheme for $P(M - W) < 0$		
			Total: 9					

Page 7	Mark Scheme	Syllabus	Paper			
	Cambridge International A Level – Oc	9709	72			
	-					
7 (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explanation why not random or "Not random" or "Not representative			
(ii)	Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1 [2]	oe Allow " $p = 0.2$ "			
(iii)	Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1 [1]	In context			
(iv)	P(X = 0) and P(X = 1) attempted P(X \le 2) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2$ (= 0.0442) P(X \le 3) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + \frac{30}{C_2} \times 0.8^{28} \times 0.2^2 + \frac{30}{C_3} \times 0.8^{27} \times 0.2^3$ = 0.123	M1 M1 B1	B(30, 0.2) No May be implied P($X \le 3$) Attempt P(X Or '0.0442' -	tot nec'y adde ied by calc P ≤ 2) + ${}^{30}C_3 \times 0.8^{27}$	ed ($X \le 2$) or $X < 0.2^3 = 0.1$	123
	cr is $X \le 2$ P(Type I) = 0.0442 (3 sf)	A1 A1 [5]				
(v)	3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 √ [2]	Comparison or $P(X \le 3) =$ Correct conc.	of 3 with the = 0.123 which lusion. No co	ir cr h is > 0.05 ontradictions	S
		Total: 11				
		Total for paper: 50				