Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

1	$\begin{aligned} & \lambda=(1.2+2.3) \div 2 \\ & =1.75 \\ & \mathrm{e}^{-1.75}\left(\frac{1.75^{2}}{2}+\frac{1.75^{3}}{3!}\right) \\ & =0.421(3 \mathrm{sf}) \end{aligned}$	M1 A1 M1 A1 [4]	Attempt combined mean, allow $1.2+2.3$ Correct mean Allow incorrect mean. Allow end errors (1 and/or 4)
		Total: 4	
2 (i)	$\frac{6}{\sqrt{120}} \quad$ oe seen $\begin{aligned} & \frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \quad(=1.826) \\ & \mathrm{P}\left(z>^{‘} 1.826^{\prime}\right)=1-\Phi\left({ }^{‘} 1.826^{\prime}\right) \\ & =0.034(2 \mathrm{sf}) \end{aligned}$	B1 M1 M1 A1 [4]	Or $6^{2} / 120$ oe seen \pm Allow without $\sqrt{ } 120$. No sd/var mix Correct tail consistent with their working 0.0339
(ii)	No n is large $(\geqslant 30)$ Sample mean is (appr) normally distrib or The CLT applies oe	B1 B1 [2]	$1^{\text {st }} \mathrm{B} 1$ for either comment $2^{\text {nd }}$ B1 for'No' with $2^{\text {nd }}$ comment (No mark for 'No' alone)
		Total: 6	
3 (i)	$\begin{aligned} & \frac{3420}{60}(=57) \\ & \frac{60}{59}\left(\frac{195200}{60}-' 57^{12}\right) \quad(=4.40678) \\ & =4.41(3 \mathrm{sf}) \end{aligned}$	B1 M1 A1 [3]	Oe As final answer
(ii)	$\begin{aligned} & ' 57 ' \pm z \sqrt{\frac{4.40678^{\prime}}{60}} \\ & z=2.326 \\ & {[56.4 \text { to } 57.6](3 \mathrm{sf})} \end{aligned}$	M1 B1 A1 [3]	$2.326-2.329$ (accept 2.33 if no better seen) NB: use of biased variance in (ii) can score in full
		Total: 6	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

4 (i)	$\begin{aligned} & k \int_{1}^{2}(3-x) d x=1 \\ & k\left[3 x-\frac{x^{2}}{2}\right]_{1}^{2}=1 \\ & (k(6-2-(3-0.5))=1) \\ & k \times 1.5=1 \text { or } k \times \frac{3}{2}=1 \text { or } k=\frac{1}{1.5} \text { oe } \\ & k=\frac{2}{3} \mathbf{A G} \end{aligned}$	M1 A1 A1 [3]	Attempt $\int \mathrm{f}(x)=1$, ignore limits or $\frac{k}{2}\left(\mathrm{~h}_{1}+\mathrm{h}_{2}\right)=1$ Correct integration \& limits or $\frac{k}{2}(2+1)=1$ No errors seen
(ii)	$\begin{aligned} & \frac{2}{3} \int_{1}^{m}(3-x) d x=0.5 \text { oe } \int \text { from } \mathrm{m} \text { to } 2 \\ & \left(\frac{2}{3}\left[3 x-\frac{x^{2}}{2}\right]_{1}^{m}=0.5\right) \\ & \frac{2}{3}\left[3 m-\frac{m^{2}}{2}-2.5\right]=0.5 \\ & m^{2}-6 m+6.5=0 \text { oe } \\ & \left(m=\frac{6 \pm \sqrt{36-4 \times 6.5}}{2}=1.42 \text { or } 4.58\right) \\ & m=1.42(3 \mathrm{sf}) \end{aligned}$	M1* dep M1* A1 A1	Attempt Int $\mathrm{f}(x)=0.5$, ignore limits oe Or use of area of trapezium Sub of correct limits into their integral. Or trapezium using 1 and m / m and 2 Any correct 3-term $\mathrm{QE}=0$ or $(\mathrm{m}-3)^{2}$ $=2.5$ or $\frac{6-\sqrt{10}}{2}$ oe; single correct ans
		Total: 7	

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	$\mathbf{9 7 0 9}$	$\mathbf{7 2}$

5 (i)	$\operatorname{Po}(1.6)$ stated or implied $\begin{aligned} & \mathrm{P}(X>3)=1-\mathrm{e}^{-1.6}\left(1+1.6+\frac{1.6^{2}}{2}+\frac{1.6^{3}}{3!}\right) \\ & =0.0788(3 \mathrm{sf}) \end{aligned}$	M1 M1 A1 [3]	Allow M1 for $1-\mathrm{P}(X \leqslant 3)$, incorrect λ and allow one end error SR Use of Bin scores B1 only for 0.0788
(ii)	$\begin{aligned} & \lambda=\frac{n}{2500} \\ & \mathrm{e}^{-\frac{\mathrm{n}}{2500}}<0.05 \quad \text { Allow }= \\ & \quad \text { Allow incorrect } \lambda \\ & -\frac{n}{2500}<\ln 0.05 \text { Attempt } \ln \mathrm{bs} \\ & n>7489.3(1 \mathrm{dp}) \\ & \text { Smallest } n=7490 \end{aligned}$	B1 M1 M1 A1 [4]	
		Total: 7	
6 (i)	$\begin{array}{ll} \mathrm{E}(T)=9 \times 78+7 \times 66 & (=1164) \\ \operatorname{Var}(T)=9 \times 7^{2}+7 \times 5^{2} & (=616) \\ \frac{1200-1164^{\prime}}{\sqrt{ } 616^{\prime}} & (=1.450) \\ \mathrm{P}(z<1.450)=\Phi(1.450) & \\ =0.927(3 \mathrm{sf}) & \end{array}$	B1 B1 M1 M1 A1 [5]	Or $9 \times 78+7 \times 66-1200$ \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean
(ii)	$\begin{array}{ll} \mathrm{E}(D)=66-78 & (=-12) \\ \operatorname{Var}(D)=7^{2}+5^{2} & (=74) \\ \frac{0-\left('-12^{\prime}\right)}{\sqrt{74}} & (=1.395) \\ \mathrm{P}(D>0)=1-\Phi\left({ }^{\prime} 1.395^{\prime}\right) & \\ 0.0815(3 \mathrm{sf}) & \end{array}$	B1 M1 M1 A1 [4]	Both needed \pm Allow without $\sqrt{ }$ Correct tail consistent with their mean Similar scheme for $\mathrm{P}(\mathrm{M}-\mathrm{W})<0$
		Total: 9	

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	72

$7 \quad$ (i)	Prob could be different later in day or on a different day oe	B1 [1]	or any explanation why not random or "Not random" or "Not representative"
(ii)	Looking for decrease (or improvement) $\mathrm{H}_{0}: \mathrm{P}($ not arrive $)=0.2$ $\mathrm{H}_{1}: \mathrm{P}($ not arrive $)<0.2$	B1 B1 [2]	oe Allow " $p=0.2$ "
(iii)	Concluding that prob has decreased (or publicity has worked) when it hasn't oe	B1 [1]	In context
(iv)	$\mathrm{P}(X=0)$ and $\mathrm{P}(X=1)$ attempted $\begin{gathered} \mathrm{P}(X \leqslant 2)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2} \\ (=0.0442) \\ \\ \mathrm{P}(X \leqslant 3)=0.8^{30}+30 \times 0.8^{29} \times 0.2+ \\ { }^{30} \mathrm{C}_{2} \times 0.8^{28} \times 0.2^{2}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3} \\ =0.123 \end{gathered}$ cr is $X \leqslant 2$ $\mathrm{P}($ Type I$)=0.0442(3 \mathrm{sf})$	M1 M1 B1 A1 A1	B $(30,0.2)$ Not nec'y added May be implied by calc $\mathrm{P}(X \leqslant 2)$ or $\mathrm{P}(X \leqslant 3)$ Attempt $\mathrm{P}(X \leqslant 2)$ Or ${ }^{‘} 0.0442{ }^{\prime}+{ }^{30} \mathrm{C}_{3} \times 0.8^{27} \times 0.2^{3}=0.123$
(v)	3 is outside cr No evidence that p has decreased (or that publicity has worked)	M1 A1 \downarrow [2]	Comparison of 3 with their cr or $\mathrm{P}(X \leqslant 3)=0.123$ which is >0.05 Correct conclusion. No contradictions
		Total: 11	
		Total for paper: 50	

