	Page 4	Mark Scheme	Syllabus Paper				
		Cambridge International A Level – O	nber 2015 9709 71				
1		$\lambda = (1.2 + 2.3) \div 2$ = 1.75 $e^{-1.75} \left(\frac{1.75^2}{2} + \frac{1.75^3}{3!} \right)$	M1 A1 M1		Attempt combined mean, allow 1.2 + 2.3 Correct mean Allow incorrect mean. Allow end errors (1 and/or 4)		
		= 0.421 (3 sf)	A1	[4]			
			Tota	l: 4			
2	(i)	$\frac{6}{\sqrt{120}}$ oe seen	B1		Or $6^2/120$ oe seen		
		$\frac{30-29}{\left(\frac{6}{\sqrt{120}}\right)} \qquad (=1.826)$	M1		\pm Allow without $\sqrt{120}$. No sd/var mix		
		$P(z > `1.826') = 1 - \Phi(`1.826')$ = 0.034 (2 sf)	M1 A1	[4]	Correct tail consistent with their working 0.0339		
	(ii)	No n is large (≥ 30)	B1		1 st B1 for either comment		
		Sample mean is (appr) normally distrib or The CLT applies oe	B1	[2]	2 nd B1 for'No'with 2 nd comment (No mark for 'No' alone)		
			Tota	l: 6			
3	(i)	$\frac{3420}{60}(=57)$	B1				
		$\frac{60}{59} \left(\frac{195200}{60} - 57^{2} \right) \qquad (= 4.40678)$ = 4.41 (3 sf)	M1		Oe		
			A1	[3]	As final answer		
	(ii)	$57' \pm z \sqrt{\frac{4.40678'}{60}}$	M1				
		<i>z</i> = 2.326	B 1		2.326 – 2.329 (accept 2.33 if no better		
		[56.4 to 57.6] (3 sf)	A1	[3]	seen) NB: use of biased variance in (ii) can score in full		
			Tota	l: 6			

	Page 5	Mark Scheme	Syllabus	Paper		
		Cambridge International A Level – Oc	9709	71		
4	(i)	$k \int_{1}^{2} (3-x)dx = 1$	M1	Attempt $\int f(x) = 1$, ignore limits or $\frac{k}{2}(h_1 + h_2) = 1$ Correct integration & limits or $\frac{k}{2}(2 + 1) = 1$		
		$k\left[3x - \frac{x^2}{2}\right]_1^2 = 1$	A1			
		(k(6-2-(3-0.5)) = 1) $k \times 1.5 = 1 \text{ or } k \times \frac{3}{2} = 1 \text{ or } k = \frac{1}{1.5} \text{ oe}$ $k = \frac{2}{3} \text{ AG}$	A1 [3]	No errors see	en	
	(ii)	$\frac{2}{3} \int_{1}^{m} (3-x)dx = 0.5$ oe \int from m to 2	M1*	Attempt Int $f(x) = 0.5$, ignore limits oe Or use of area of trapezium		
		$\left(\frac{2}{3}\left[3x - \frac{x^2}{2}\right]_1^m = 0.5\right)$ $\frac{2}{3}\left[3m - \frac{m^2}{2} - 2.5\right] = 0.5$	dep M1*	Sub of correct Or trapezium	ct limits into	heir integral.
		$m^2 - 6m + 6.5 = 0$ oe	A1	Any correct : =2.5		
		$\left(m = \frac{6 \pm \sqrt{36 - 4 \times 6.5}}{2} = 1.42 \text{ or } 4.58\right)$ m = 1.42 (3 sf)	A1 [4]	or $\frac{6-\sqrt{10}}{2}$ or	e; single corre	ect ans
			Total: 7			

	Page 6					Syllabu			
		Cambridge International A Level – October/November 2015				9709	71		
5	(i)	Po(1.6) stated or implied	$16^2 16^3$	M1					
		$P(X > 3) = 1 - e^{-1.6} \left(1 + 1.6 \right)$	$+\frac{1.6}{2}+\frac{1.6}{3!}$	M1		Allow M1 for $1 - P(X \leq 3)$, incorrect λ and allow one end error			
		= 0.0788 (3 sf)		A1	[3]	SR Use of Bin scores B1 only for 0.078)788
	(ii)	$\lambda = \frac{n}{2500}$		B1		$e^{-\mu} < 0.05$	M1	or 2499 2500	B1
		$e^{-\frac{n}{2500}} < 0.05$ Allow = Allow in	correct λ	M1				$\left(\frac{2499}{2500}\right)^n < 0.0$	
		$-\frac{n}{2500} < \ln 0.05$ Attempt ln b	ln bs	M1		$-\mu < \ln 0.05$ ($\mu > 2.9957$)	M1	$n \ln \frac{2499}{2500} < \ln 0$	
		<i>n</i> > 7489.3 (1 dp) Smallest <i>n</i> = 7490		A1	[4]	$n = \mu \times 2500$ Smallest $n = 1$	21	Smallest $n = 74$	M1 488 A1
				Total: 7			·		
6	(i)	$E(T) = 9 \times 78 + 7 \times 66$	(= 1164)	B1		Or $9 \times 78 + 7 \times 66 - 1200$			
		$Var(T) = 9 \times 7^2 + 7 \times 5^2$ 1200–'1164'	(= 616)	B1 M1		± Allow with	out √		
		$\frac{1200-1104}{\sqrt{616'}}$	(= 1.450)						
		$P(z < 1.450) = \Phi (1.450)$ = 0.927 (3 sf)		M1 A1	[5]	Correct tail co	onsistent	with their mea	ın
	(ii)	E(D) = 66 - 78	(=-12)	B1		Both needed			
		$\operatorname{Var}(D) = 7^2 + 5^2$	(= 74)						
		$\frac{0 - ('-12')}{\sqrt{74}}$	(= 1.395)	M1		\pm Allow with	out √		
		$P(D > 0) = 1 - \Phi$ ('1.395') 0.0815 (3 sf)		M1 A1	[4]	Correct tail co Similar schen		with their mean $M - W > 0$	ın
		Total: 9		l: 9					
						I			

	Page 7	Mark Scheme					Paper	
		Cambridge International A Level – O	nber 2015	9709	71			
7	(i)	Prob could be different later in day or on a different day oe	B1	[1]	or any explanation why not random or "Not random" or "Not representative"			
	(ii)	Looking for decrease (or improvement) H ₀ : P(not arrive) = 0.2 H ₁ : P(not arrive) < 0.2	B1 B1	[2]	oe Allow " $p = 0.2$ "			
	(iii)	Concluding that prob has <u>decreased</u> (or publicity has worked) when it hasn't oe	B1	[1]	In context			
	(iv)	P(X = 0) and P(X = 1) attempted P(X \le 2) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{30}C_2 \times 0.8^{28} \times 0.2^2$ (= 0.0442) P(X \le 3) = $0.8^{30} + 30 \times 0.8^{29} \times 0.2 + 30^{30}C_2 \times 0.8^{28} \times 0.2^2 + 30^{30}C_3 \times 0.8^{27} \times 0.2^3$ = 0.123	M1 M1 B1		B(30, 0.2) Not nec'y added May be implied by calc P($X \le 2$) or P($X \le 3$) Attempt P($X \le 2$) Or '0.0442' + ³⁰ C ₃ × 0.8 ²⁷ × 0.2 ³ = 0.12		123	
		cr is $X \le 2$ P(Type I) = 0.0442 (3 sf)	A1 A1	[5]				
	(v)	3 is outside cr No evidence that <i>p</i> has decreased (or that publicity has worked)	M1 A1 √	[2]	Comparison of 3 with their or $P(X \le 3) = 0.123$ which Correct conclusion. No con		iii = 0.05	s
			Total	: 11				
				for : 50				