	Page	e 4	Mark Scheme				Syllabus	Paper	
			Cambridge International AS/A Level –	Octo	ber/	November 2015	9709	63	
1		cod	led mean = 0.3 oe	B1		$\Sigma(t - 2.5) = 75 \text{ B0}$	until ÷ 250		
		sd	$=\sqrt{\frac{96.1}{250}-(0.3)^2}$	M1		Subst in variance f	ormula both	terms coded	1
			= 0.543	A1	3	Correct answer			
		Alt Σt^2	: $\Sigma(t-2.5)^2$ expanded = 2033.6	Or B1					
		sd	$=\sqrt{\frac{2033.6}{250}-2.8^2}$	M1		Substituting their Σ expression 250 an	Et^2 from expanded 2.8 in varia	inded 3-term	n a
			= 0.543	A1	3				
2	(i)	P(X	$f(x) = \frac{20}{28} \left(\frac{5}{7}\right) (0.714), 71.4\%$	B1	1	oe			
	(ii)	P(F	$T = \frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10} = \frac{7}{20}$	M1		Summing two 2-factor probs created by			
				A1	2	Added to 4/10 or 6 Correct answer	$10 \times \text{altn po}$	pulation pro	ob
	(iii)	P(.	$X F) = \frac{5/28}{7/20} = \frac{25}{49}(0.510)$	M1		Their unsimplified (5/28) as num or de Or (their fair hair p hair pop)	country X p enom of a fra population) ÷	robability action (total fair	
				A1	2	Correct answer			
3	(i)	P(S	$T) = \frac{3}{16}$	M1		Sensible attempt at	t P(<i>S</i>)		
		P(7	$)=\frac{4}{16}$	M1		Sensible attempt at	t P(<i>T</i>)		
		P(S	$T\cap T)=\frac{2}{16}$	B1		Correct $P(S \cap T)$			
		P(S	$P(T) \times P(T) = \frac{3}{64} \neq \frac{2}{16}$	M1		comp $P(S) \times P(T)$ values), evaluated	with $P(S \cap T)$	(their	
		No	t independent	A1	5	Correct conclusion working	following a	ll correct	
	(ii)	not Or Or	exclusive since $P(S \cap T) \neq 0$ counter example e.g. 1 and 3 $P(SUT) \neq P(S)+P(T)$ with values	B1√ [^]	1	FT their $P(S \cap T)$, n $P(T)$, with value ar	ot obtained f nd statement.	rom P(S) ×	
4	(i)	z =	1.127	B 1		\pm 1.127 seen accep	ot rounding to	0±1.13	
		1.1	$27 = \frac{136 - 125}{\sigma}$	M1		Standardising no c	c no sq rt, wi	th attempt	
			$\sigma = 9.76$	A1	3	at z (not $\pm 0.8078, \pm 0.5$ Correct ans	517, ±0.13, ±	=0.87)	

Mark Scheme Cambridge International AS/A Level – October/November 2015

Page 5

Syllabus Paper 9709 63

5	(ii) (a)	$P(131 < x < 141) = P\left(\frac{131 - 125}{9.76} < z < \frac{141 - 125}{9.76}\right)$ = $\Phi(1.639) - \Phi(0.6147)$ = $0.9493 - 0.7307$ = 0.2186 Number = $0.2186 \times 170 = 37$ or 38 or awrt 37.2 e.g. **(AAOOOI)***** $\frac{8!}{2!2!} \times \frac{6!}{2!3!} = 604800$		Standardising once with their sd, no $\sqrt{2}$, allow cc Correct area $\Phi 2 - \Phi 1$ Mult by 170, P<1Correct answer, nfww8! (8 × 7!) or 6! seen anywhere, either alone or in numerator)Dividing by at least 3 of 2!2!2!3! (may be fractions added) Correct answer
	(b)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1 A1 M1* DM1 A1 5	Mult 3 appropriate combinations together assume $6={}^{6}C_{1}$, $1={}^{4}C_{0}$ etc., $\sum r=4$, C&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$ Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${}^{7}C_{1} \times {}^{6}C_{1} \times (\text{sum of at least 4} \text{ outcomes})$
6	(i)	fd 0.9, 3, 4.2, 5.2, 1.4 fd 5 4 3 2 1 2 0.5 30.5 40.5 50.5 60.5 70.5 80.5 ht metres	M1 A1 B1 B1 4	Attempt at scaled freq [f/(attempt at cw)] Correct heights seen on diagram Scale no less than 1cm to 1 unit Correct bar widths visually no gaps Labels (ht/metres and fd or freq per 20 m etc.) and end points at 20.5 etc. condone 2 end point errors, scale no less than 1cm to 5m for 20,30 unless clearly accurate, linear scale between 20.5 and 80

Page	e 6 Mark Schem	Syllabus Paper					
	Cambridge International AS/A Level – October/November 2015			November 2015 9709 63			
(ii)	$(30.5 \times 18 + 43 \times 15 + 48 \times 21 + 55.5 \times 52 + 70.5 \times 28)/134$	M1		Attempt at unsimplified, mid points (at least 4 within 0.5)			
	$=\frac{7062}{134}=52.701$	M1 A1		Attempt at Σfx their mid points ÷ 134 Correct mean rounding to 53			
	Var = $(30.5^2 \times 18 + 43^2 \times 15 + 48^2 \times 21 + 55.5^2 \times 52 + 70.5^2 \times 28)/134 - 52.701^2$ = 392203 5/134 - 52 701 ² = 149 496	M1		Attempts at Σfx^2 their mid points ÷ their Σf – mean ²			
	sd = 12.2	A1	5	Correct answer, nfww			
7 (i)	$P(0, 1, 2) = (0.92)^{19} + {}^{19}C_1(0.08)(0.92)^{18} + {}^{19}C_2(0.08)^2(0.92)^{17}$	M1 M1		Binomial term ${}^{19}C_x p^x (1-p)^{19-x}$ seen $0Correct unsimplified expression$			
	= 0.809	A1	3	Correct answer (no working SC B2)			
(ii)	P(at least 1) = 1 - P(0) = 1 - P(0.92) ⁿ > 0.90 0.1 > (0.92) ⁿ n > 27.6	M1 M1	3	Eqn with their 0.92^n , 0.9 or 0.1 , 1 not nec Solving attempt by logs or trial and error, power eqn with one unknown power			
				$\frac{1}{2}$			
(iii)	np = $1800 \times 0.08 = 144$ npq = 132.48 P(at least 152) = P($z > (151.5 - 144)$)	B1 M1		correct unsimplified np and npq seen accept 132.5, 132, 11.5, awrt 11.51 standardising, with $$			
	$\left[\begin{array}{c} r(at least 132) - r\left(\frac{2}{\sqrt{132.48}} \right) \right]$	M1		cont correction 151.5 or 152.5 seen			
	= P(z > 0.6516) = 1 - 0 7429	M1		correct area $1 - \Phi$ (probability)			
	= 0.257	A1	5	correct answer			
(iv)	Use because 1800 ×0.08 (and 1800 × 0.92 are both) > 5	B1	1	$1800 \times 0.08 > 5$ is sufficient np>5 is sufficient if clearly evaluated in (iii)			
				If $npq > 5$ stated then award B0			