Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	63

1	coded mean $=0.3$ oe $\begin{aligned} \operatorname{sd} & =\sqrt{\frac{96.1}{250}-(0.3)^{2}} \\ & =0.543 \end{aligned}$ Alt: $\Sigma(t-2.5)^{2}$ expanded $\begin{aligned} \Sigma t^{2} & =2033.6 \\ \text { sd } & =\sqrt{\frac{2033.6}{250}-2.8^{2}} \\ & =0.543 \end{aligned}$	B1 M1 A1 3 Or B1 M1 A1 3	$\Sigma(t-2.5)=75 \text { B0 until } \div 250$ Subst in variance formula both terms coded Correct answer Substituting their Σt^{2} from expanded 3-term expression, 250 and 2.8 in variance formula
2 (i)	$\mathrm{P}(X)=\frac{20}{28}\left(\frac{5}{7}\right)(0.714), 71.4 \%$	B1	oe
(ii)	$\mathrm{P}(F)=\frac{20}{28} \times \frac{1}{4} \times \frac{8}{28} \times \frac{6}{10}=\frac{7}{20}$	$\begin{array}{ll} \text { M1 } & \\ & \\ \text { A1 } & 2 \end{array}$	Summing two 2 -factor probs created by One of $1 / 4$ or $3 / 4$ multiplied by $20 / 28$ or $8 / 28$ Added to $4 / 10$ or $6 / 10 \times$ altn population prob Correct answer
(iii)	$\mathrm{P}(X \mid F)=\frac{5 / 28}{7 / 20}=\frac{25}{49}(0.510)$	M1 A1	Their unsimplified country X probability (5/28) as num or denom of a fraction Or (their fair hair population) \div (total fair hair pop) Correct answer
3 (i)	$\begin{aligned} & \mathrm{P}(S)=\frac{3}{16} \\ & \mathrm{P}(T)=\frac{4}{16} \\ & \mathrm{P}(S \cap T)=\frac{2}{16} \\ & \mathrm{P}(S) \times \mathrm{P}(T)=\frac{3}{64} \neq \frac{2}{16} \end{aligned}$ Not independent	$\begin{array}{\|ll} \hline \text { M1 } \\ \text { M1 } \\ \text { B1 } \\ \text { M1 } \\ & \\ \text { A1 } & 5 \end{array}$	Sensible attempt at $\mathrm{P}(S)$ Sensible attempt at $\mathrm{P}(T)$ Correct $\mathrm{P}(S \cap T)$ comp $\mathrm{P}(S) \times \mathrm{P}(T)$ with $\mathrm{P}(S \cap T)$ (their values), evaluated Correct conclusion following all correct working
(ii)	not exclusive since $\mathrm{P}(S \cap T) \neq 0$ Or counter example e.g. 1 and 3 Or $\mathrm{P}(\mathrm{SUT}) \neq \mathrm{P}(\mathrm{S})+\mathrm{P}(\mathrm{T})$ with values	B1^ 1	FT their $\mathrm{P}(S \cap T)$, not obtained from $\mathrm{P}(S) \times$ $\mathrm{P}(T)$, with value and statement.
$4 \quad$ (i)	$\begin{aligned} & z=1.127 \\ & 1.127=\frac{136-125}{\sigma} \\ & \quad \sigma=9.76 \end{aligned}$	$\begin{array}{ll} \text { B1 } & \\ \text { M1 } & \\ \text { A1 } & 3 \end{array}$	$\pm 1.127 \text { seen accept rounding to } \pm 1.13$ Standardising no ce no sq rt, with attempt at z $\text { (not } \pm 0.8078, \pm 0.5517, \pm 0.13, \pm 0.87 \text {) }$ Correct ans

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	63

(ii)	$\begin{aligned} \mathrm{P}(131 & <x<141)=\mathrm{P}\left(\frac{131-125}{9.76}<\mathrm{z}<\frac{141-125}{9.76}\right) \\ & =\Phi(1.639)-\Phi(0.6147) \\ & =0.9493-0.7307 \\ & =0.2186 \end{aligned}$ Number $=0.2186 \times 170=37$ or 38 or awrt 37.2	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } & \\ \text { M1 } & \\ \text { A1 } & 4 \end{array}$	Standardising once with their sd, no $\sqrt{ }{ }^{2}$, allow cc Correct area $\Phi 2$ - $\Phi 1$ Mult by $170, \mathrm{P}<1$ Correct answer, nfww
5 (a)	$\begin{aligned} & \text { e.g. }{ }^{* *}(\mathrm{AAOOOI})^{* * * *} \\ & \frac{8!}{2!2!} \times \frac{6!}{2.3!}=604800 \end{aligned}$	B1 M1 A1 3	$8!(8 \times 7!)$ or 6 ! seen anywhere, either alone or in numerator) Dividing by at least 3 of $2!2!2!3$! (may be fractions added) Correct answer
(b)	$\begin{array}{llll} \mathrm{C}(7) & \mathrm{E}(6) & \mathrm{A}(4) & \\ 1 & 1 & 2 & =7 \times 6 \times{ }^{4} \mathrm{C}_{2}=252 \\ 1 & 2 & 1 & =7 \times{ }^{6} \mathrm{C}_{2} \times 4=420 \\ 1 & 3 & 0 & =7 \times{ }^{6} \mathrm{C}_{3} \times 1=140 \\ 2 & 1 & 1 & ={ }^{7} \mathrm{C}_{2} \times 6 \times 4=504 \\ 2 & 2 & 0 & ={ }^{7} \mathrm{C}_{2} \times{ }^{6} \mathrm{C}_{2} \times 1=315 \\ 2 & 2 & 0 & ={ }^{7} \mathrm{C}_{3} \times 6 \times 1=210 \end{array}$ Total $=1841$	M1 A1 M1* DM1 A1 5	Mult 3 appropriate combinations together assume $6={ }^{6} \mathrm{C}_{1}, 1={ }^{4} \mathrm{C}_{0}$ etc., $\sum r=4$, C\&E both present At least 3 correct unsimplified products Listing at least 4 different correct options Summing at least 4 outcomes, involving 3 combs or perms, $\sum r=4$ Correct answer SC if CE removed, M1 available for listing at least 4 different correct options for remaining 2. DM1 for ${ }^{7} \mathrm{C}_{1} \times{ }^{6} \mathrm{C}_{1} \times$ (sum of at least 4 outcomes)
6 (i)		M1 A1 B1 B1 4	Attempt at scaled freq [f/(attempt at cw)] Correct heights seen on diagram Scale no less than 1 cm to 1 unit Correct bar widths visually no gaps Labels (ht/metres and fd or freq per 20 m etc.) and end points at 20.5 etc. condone 2 end point errors, scale no less than 1 cm to 5 m for $20,30 \ldots$ unless clearly accurate, linear scale between 20.5 and 80

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	63

(ii)	$\begin{aligned} & (30.5 \times 18+43 \times 15+48 \times 21+55.5 \times 52+ \\ & 70.5 \times 28) / 134 \\ & =\frac{7062}{134}=52.701 \end{aligned}$ $\begin{aligned} & \mathrm{Var}=\left(30.5^{2} \times 18+43^{2} \times 15+48^{2} \times 21+55.5^{2}\right. \\ & \left.\times 52+70.5^{2} \times 28\right) / 134-52.701^{2} \\ & =392203.5 / 134-52.701^{2}=149.496 \\ & \mathrm{sd}=12.2 \end{aligned}$	M1 M1 A1 M1 A1 5	Attempt at unsimplified, mid points (at least 4 within 0.5) Attempt at $\Sigma f x$ their mid points $\div 134$ Correct mean rounding to 53 Attempts at $\Sigma f x^{2}$ their mid points \div their $\Sigma f-$ mean ${ }^{2}$ Correct answer, nfww
7 (i)	$\begin{aligned} & \mathrm{P}(0,1,2)= \\ & (0.92)^{19}+{ }^{19} \mathrm{C}_{1}(0.08)(0.92)^{18}+{ }^{19} \mathrm{C}_{2}(0.08)^{2}(0.92)^{17} \\ & =0.809 \end{aligned}$	$\begin{array}{ll} \text { M1 } & \\ \text { M1 } \end{array}$	Binomial term ${ }^{19} \mathrm{C}_{x} p^{x}(1-p)^{19-x}$ seen $0<p<1$ Correct unsimplified expression Correct answer (no working SC B2)
(ii)	$\begin{aligned} & \mathrm{P}(\text { at least } 1)=1-\mathrm{P}(0) \\ & \quad=1-\mathrm{P}(0.92)^{n}>0.90 \\ & 0.1>(0.92)^{n} \\ & n>27.6 \end{aligned}$ Ans 28	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } 3 \end{aligned}$	Eqn with their $0.92^{n}, 0.9$ or $0.1,1$ not nec Solving attempt by logs or trial and error, power eqn with one unknown power Correct answer, not approx., $\approx, \geqslant,>, \leqslant,<$
(iii)	$\begin{aligned} & \mathrm{np}=1800 \times 0.08=144 \\ & \quad \mathrm{npq}=132.48 \\ & \mathrm{P}(\text { at least } 152)=\mathrm{P}\left(z>\left(\frac{151.5-144}{\sqrt{132.48}}\right)\right) \\ & \quad=\mathrm{P}(z>0.6516) \\ & \quad=1-0.7429 \\ & \quad=0.257 \end{aligned}$	B1 M1 M1 M1 A1 5	correct unsimplified np and npq seen accept $132.5,132,11.5$, awrt 11.51 standardising, with $\sqrt{ }$ cont correction 151.5 or 152.5 seen correct area $1-\Phi$ (probability) correct answer
(iv)	Use because 1800×0.08 (and 1800×0.92 are both) >5	B1 1	$1800 \times 0.08>5$ is sufficient $n p>5$ is sufficient if clearly evaluated in (iii) If $n p q>5$ stated then award B0

