Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	62

1	$\begin{aligned} & \sum x-100 n=216 \\ & 2416-100 n=216 \\ & n=22 \\ & \text { OR } \\ & \frac{2416}{n}=\frac{216}{n}+100 \\ & n=22 \end{aligned}$	B1 B1 B1 3 B1 B1 B1	$\Sigma x-100 n$ seen Subst 2416 for their Σx Correct answer $2416 / n$ seen or $216 / n+100$ oe eg $\Sigma x / n-100=216 / n$ correct equation Correct answer
2	$\begin{aligned} & \text { P(no men) } \frac{{ }^{9} C_{6}}{{ }^{16} C_{6}}=\frac{84}{8008}=\frac{21}{2002}=\frac{3}{286} \\ & \quad=0.0105 \end{aligned}$	B1 B1 B1 3 B1 B1 B1	${ }^{9} \mathrm{C}_{6}$ seen anywhere ${ }^{16} \mathrm{C}_{6}$ seen as denom of fraction oe Correct final answer $(9 \times 8 \times 7 \times 6 \times 5 \times 4)$ seen anywhere Correct unsimplified denom Correct final answer
3 (i)	$\frac{1}{4}$	B1 1	
(ii)	$\left(\frac{3}{4}\right)^{4}\left(\frac{1}{4}\right)=\frac{81}{1024}=0.0791$	$\begin{array}{ll} \text { M1 } & \\ \text { A1 } & 2 \end{array}$	Expression of form $p^{4}(1-p)$ only, $p=1 / 4$ or $3 / 4$ Correct answer
(iii)	$\begin{aligned} \mathrm{P}(\text { all diff }) & =\frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} \times 4! \\ & =\frac{3}{32}(0.0938) \end{aligned}$ OR $1 \times \frac{3}{4} \times \frac{2}{4} \times \frac{1}{4}=\frac{3}{32}$	M1 M1 A1 3	4 ! on numerator seen mult by $\mathrm{k} \geqslant 1$ or $3 \times 2 \times 1$ on num oe, must be in a fraction. 4^{4} on denom or 4^{3} on denom with the $3 \times 2 \times 1$ Correct answer
$4 \quad$ (i)	Two in same taxi: $\begin{aligned} & { }^{6} \mathrm{C}_{2} \times{ }^{4} \mathrm{C}_{4} \times 2 \text { or }{ }^{6} \mathrm{C}_{2}+{ }^{6} \mathrm{C}_{4} \\ & =30 \end{aligned}$	M1 M1 A1 3	${ }^{6} \mathrm{C}_{4}$ or ${ }^{6} \mathrm{C}_{2}$ oe seen anywhere 'something' $\times 2$ only or adding 2 equal terms Correct final answer
(ii)	$\begin{aligned} & \underset{\left({ }^{5} C_{1} \times 2 \times 2\right) \times{ }^{4} \mathrm{P}_{4}}{\text { MJS in taxi }} \\ & =480 \end{aligned}$	M1 M1 M1 A1 4	${ }^{5} \mathrm{P}_{1},{ }^{5} \mathrm{C}_{1}$ or 5 seen anywhere Mult by 2 or 4 oe Mult by ${ }^{4} \mathrm{P}_{4}$ oe eg 4 ! or $4{ }^{3} \mathrm{P}_{3}$ or can be part of 5! Correct final answer

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	62

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	62

(iv)	$\begin{aligned} & \text { P(even given }+ \text { ve }) \\ & =\frac{5}{9} \\ & \text { OR P(even given }+\mathrm{ve})=\frac{\left(\frac{5}{16}\right)}{\left(\frac{9}{16}\right)} \\ & \qquad=\frac{5}{9}(0.556) \end{aligned}$	M1 A1 2 M1 A1	Counting their even numbers and dividing by their positive numbers Correct answer Using cond prob formula not $\mathrm{P}(\mathrm{E}) \times$ $\mathrm{P}(+\mathrm{ve})$ need fraction over fraction accept any of $\frac{5 / 16 \text { or } 6 / 16 \text { or } 9 / 16}{9 / 16 o r 10 / 16 o r 13 / 16}$ Correct answer
$7 \quad$ (a) (i)	$\begin{aligned} & \left.\begin{array}{l} \mathrm{P}(x>3900)=\mathrm{P}\left(z>\frac{3900-4520}{560}\right) \\ \quad=\mathrm{P}(z>-1.107)=\Phi(1.107) \\ \quad \end{array}\right) .0 .8657 \\ & \text { Number of days }=365 \times 0.0 .8657 \\ & \quad=315 \text { or } 316(315.98) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { B1ઈ } 4 \end{aligned}$	Standardising no ce no sq rt no sq Correct area Φ ie >0.5 Prob rounding to 0.866 Correct answer ft their wrong prob if previous A $0, p<1$, ft must be accurate to 3 sf
(ii)	$\begin{aligned} & z=1.165 \\ & 1.165=\frac{8000-m}{560} \\ & \quad m=7350(7347.6) \end{aligned}$	B1 M1 $\text { A1 } 3$	$\pm 1.165 \text { seen }$ Standardising eqn allow sq, sq rt, cc, must have z-value eg not $0.122,0.878,0.549$, 0.810 . Correct answer rounding to 7350
(iii)	$\begin{aligned} \mathrm{P}(0,1) & =(0.878)^{6}+{ }^{6} \mathrm{C}_{1}(0.122)^{1}(0.878)^{5} \\ & =0.840 \text { accept } 0.84 \end{aligned}$ Normal approx. to Binomial. M0, M0, A0	M1 M1 A1 3	$\begin{aligned} & \text { Binomial term }{ }^{6} \mathrm{C}_{x} p^{x}(1-p)^{6-x} \quad 0<p<1 \\ & \text { seen } \\ & \text { Correct unsimplified expression } \\ & \text { Correct answer } \end{aligned}$
(b)	$\begin{aligned} \mathrm{P}(<2 \mu) & =\mathrm{P}\left(z>\frac{2 \mu-\mu}{\sigma}\right)=\mathrm{P}(z<1.5) \\ & =0.933 \end{aligned}$	M1 M1 A1 3	Standardising with μ and σ Attempt at one variable and cancel Correct answer

