Page 4	Mark Scheme					Paper	
	Cambridge International AS/A Level – October/November 2015 97					43	
1	Tension is 30 N	B1					
	$[R = (4g - 30) \times 0.8]$	M1		For resolving forces acting on <i>B</i> , perpendicular to the plane.			
	Normal component is 8 N	A1	3				
2	$F = T\cos\alpha = 0.96T$	B1					
	$R = 0.2g - T\sin\alpha = 2 - 0.28T$	B 1					
	[0.96T = 0.25(2 - 0.28T)]	M1		For using $F = \mu L$	R		
	$[(0.96 + 0.07)T = 0.5 \rightarrow T =]$	M1		For solving resu	or solving resultant equation for T		
	T = 0.485	A1	5				
3		M1		For resolving fo $-x$ direction	rces in the <i>x</i>	or	
	$120\cos 75^\circ = 150 - 100 - P\cos\theta^\circ$	A1					
		M1		For resolving forces in the <i>y</i> direction			
	$120\sin75^\circ = P\sin\theta^\circ$	A1					
	$[P^2 = 14400 - 12000\cos 75^\circ + 2500]$ or			For using P^2 = $(P\cos\theta)^2 + (P\sin\theta)^2$ or for using $P\sin\theta/P\cos\theta = \tan\theta$			
	$\tan\theta = [120\sin75^{\circ}/(50 - 120\cos75^{\circ})]$	M1					
	$P = 117 \text{ or } \theta = 80.7$	A1					
	$\theta = 80.7 \text{ or } P = 117$	B1	7				
4 (i)		M1		For applying Ne or to <i>B</i> or for us $m_Ag - m_Bg = (m_A)$	with the second	nd law to A	
	0.35g - T = 0.35a T - 0.15g = 0.15a (0.35 - 0.15)g = (0.35 + 0.15)a	A1		Two of the three	e equations		
	Acceleration is 4 ms^{-2}	B 1					
	Tension is 2.1 N	B 1	4				
(ii)	$[v_1^2 = 0 + 8 \times 1.6 \ (= 12.8)]$	M1		For using $v_1^2 = 0$	$) + 2a \times 1.6$		
	$[H = 1.6 + (-12.8) \div (-20)]$	M1		For using $H = 1$ or for using $h =$	$(6 + (0 - v_1^2))$ $(0 - v_1^2)/(-2)$	/(-2g) g)	
	Greatest height is 2.24 m	A1	3				

Page 5	Mark Schem	е			Syllabus	Paper
	Cambridge International AS/A Level – October/November 201			ovember 2015	9709	43
		T	r	T		
5 (i)	$a = (5^2 - 3^2) \div (2 \times 500) = 0.016$	B1				
		M1		For using Newton's 2 nd law		
	$DF + 90g \times 0.05 - R = 90 \times 0.016$	A1				
	$[R = \frac{420}{v} - 90(0.016 - 0.5)]$	M1		For using $DF = P/v$		
	$R = \frac{420}{v} + 43.56$	A1	5	AG		
				SR for assuming (max 2/5) PE loss = 90g(5) KE gain = $\frac{1}{2}$ (9) WD _{DF} +PE loss = $\rightarrow R = 420/v + 100$	g constant R 00)(0.05) and $00)(5^2-3^2)$ = KEgain+W 43.56 B1	and <i>DF</i> d B1 ⁷ D _R
(ii)	$v_M^2 = 3^2 + 2 \times 0.016 \times 250 \rightarrow$					
	speed at mid-point is 4.12ms ⁻¹	B1				
	[Decrease in <i>R</i> from top to mid-way =420[$(1\div 3) - (1\div \sqrt{17})$]				1:00	
	or [Decrease in <i>R</i> from midway to b'm = $420[(1 \div \sqrt{17}) - (1 \div 5)]$	M1		top to midway o	or midway to	bottom
	38.1 and 17.9	A1	3			
6 (i)	Time taken = $\frac{0.08}{0.0002}$ = 400 s	B1				
	$v = \frac{\mathrm{d}x}{\mathrm{d}t} = 0.16t - 0.0006t^2$	B 1				
	[speed = $-0.16 \times 400 + 0.0006 \times 400^2$]	M1		For evaluating ±	=v(400)	
	Speed at O is 32 ms^{-1}	A1	4			
(ii) (a) Time to furthest point is 0.16/0.0006 s	B1√ [^]			kt^2 or $006t^2$ from p	oart (i)
	$[0.08(800/3)^2 - 0.0002(800/3)^3]$ (×2)	M1*		For evaluating $x(t_{\text{furthest point}})$ (2)	×2)	
	Distance moved is 3790 m	A1	3			
(b) [speed = $3790/400 \text{ ms}^{-1}$]	dM1*		For using 'avera moved/time tak	age speed = t	otal distance
	Average speed is 9.48 ms ⁻¹	A1	2			

Page 6	Mark Scheme					Paper
	Cambridge International AS/A Level – October/November 2015				9709	43
7 (i)	Gain in KF					
, (I)	$= \frac{1}{2} 1250(8^2 - 5^2)$	B 1				
	Loss in PE = $1250g \times 400 \sin 4^{\circ}$	B 1				
		M1		For using WD by $DF = \text{Gain in KE} - \text{Loss in PE} + \text{WD by resistance}$		
	$400(DF) = \frac{1}{2} 1250 (8^2 - 5^2) - 1250g \times 400\sin^6 + 2000 \times 400$	A1				
	Driving force is 1189 N or 1190 N	A1	5			
				SR for using Newton's second law (max 2/5) $DF + 1250gsin4^{\circ} - 2000 = 1250a$ B1 $a = (8^2 - 5^2)/2 \times 400 \rightarrow DF = 1190$ N B1		
(ii)		M1		For using Newto acceleration for finding $v_{\rm C}$ an $v^2 = u^2 + 2as$ to	on's second l or d using find accelera	aw to find tion
	$1189 \times 2 - 2000 = 1250a$ or $22.75^2 = 8^2 + 2a \times 750$	A1√ [^]		<i>√ DF</i> from part	(i)	
	Acceleration is 0.302 ms^{-2}	A1	3			
(iii)	$v_c^2 = 64 + 2 \times 0.302 \times 750$	B1√ [^]			rom part (ii)	
	$[P/22.75 - 2000 = 1250 \times 0.302]$	M1				
	Power is 54.1 kW or 54100 W	A1	3			