F	Page 4	Mark Scheme				Syllabus	Paper	
		Cambridge International AS/A Level – October/November 2015				9709	42	
1	(i)		M1		For resolving forces in the <i>x</i> direction			
		$15 + F\cos 60^\circ = F\cos 30^\circ$	A1					
		<i>F</i> = 41.0	A1	3	AG $F = 15(1 + 1)$	+ \sqrt{3})		
	(ii)	$[G = F(\sin 30^\circ + \sin 60^\circ)]$	M1		For resolving forces in the <i>y</i> direction			
		<i>G</i> = 56.0	A1	2	Allow $15(2 + \sqrt{3})$			
2	(i)	$[V^2 = (V - 10)^2 + 2g \times 35]$	M1		For using $v^2 = u^2 + 2gs$ to obtain an equation in V only or to obtain two equations in V and H and attempting to eliminate H			
		20 $V = 100 + 70g$	A1					
		<i>V</i> = 40	A1	3				
		Alte	rnative	for 2(i)				
	(i)		M1		A complete method considering the fina and either $s = ut + \frac{1}{2}at^2$ or $s =$	to find V by al 35 m using = $(u + v)/2 \times$	$\frac{d}{dt}v = u + at$	
		$V = V - 10 + 10t \rightarrow t = 1 \text{ and}$ 35 = (V - 10) × 1 + $\frac{1}{2}$ ×10 ×1 ² or 35 = (V - 10 + V)/2 × 1 V = 40	A1 A1	3				
	(ii)	$[40^2 = 0^2 + 20H]$	M1		For using $v^2 = u^2 + 2$	2 <i>gs</i>		
		<i>H</i> = 80	A1	2				
3	(i)	$[a(t) = 0.00012t^2 - 0.012t + 0.288]$	M1*		For attempting to d	ifferentiate v	v(t)	
		$[a(t) = 0.00012(t^2 - 100t + 2400) = 0.00012(t - 40)(t - 60) = 0]$	dM1*		For setting $a(t) = 0$ a three term quadra	and attempti tic	ng to solve	
		a(t) = 0 when $t = 40$ and $t = 60$	A1	3				
	(ii)	$[0.00001t^4 - 0.002t^3 + 0.144t^2]$	M1†		For attempting to in	ntegrate $v(t)$		
		$[0.00001(100)^4 - 0.002(100)^3 + 0.144(100)^2]$	dM1†		Integration attempt = 0 to $t = 100$	ed using cor	rect limits t	
		Displacement is 440 m	A1	3				

Page 5	Mark Sc	Syllabus	Paper				
	Cambridge International AS/A Level – October/November 2015					42	
4		M1		For using $R = 2\cos 45^{\circ}$ and $F = \mu R$			
	Frictional force = $0.4 \times 2 \cos 45$ = $0.4 \sqrt{2}$	A1					
	KE gain = $\frac{1}{2} \times 0.2 \times V_{\rm C}^2$ and PE loss = $0.2 \times g \times (2.5 + 2\sqrt{2})$	B1					
		For using KE gain from A to C $=$ PE loss from A to C – Work done byM1			lone by		
	0.1 $V_{\rm C}^2 = (5 + 4\sqrt{2}) - 0.4\sqrt{2} \times 4$	A1					
	Speed at C is $9.16 \mathrm{ms}^{-1}$	A1	6				
	First alternativ	ve for th	e last fo	our marks			
	$\frac{V_2}{V_2} \times 0.2 \times V_B^2 = 0.2 \times g \times 2.5 \rightarrow V_B^2 = 50$	B1					
		M1		For using KE gain from B to C – World	from <i>B</i> to <i>C</i> : k done by fri	= PE loss ctional force	
	$0.1 (V_{\rm C}^2 - V_{\rm B}^2) = 0.2 \times g \times (4 \div \sqrt{2}) - 0.4 \sqrt{2} \times 4$	A1					
	Speed at C is 9.16 ms ⁻¹	A1					
	Second alternat	tive for t	he last f	four marks			
	$V_2 \times 0.2 \times V_B^2 = 0.2 \times g \times 2.5 \rightarrow V_B^2 = 50$	B1					
		M1		For using Newton's acceleration along $2as$ to find $V_{\rm C}$	s 2 nd law to f BC and using	$ \begin{array}{l} \text{ind} \\ \text{g } v^2 = u^2 + \end{array} $	
	$\sqrt{2} - 0.4\sqrt{2} = 0.2a \rightarrow a$ = $3\sqrt{2}$ ms ⁻² and $V_{\rm C}^2 = V_{\rm B}^2 + 2 \times 3\sqrt{2} \times 4$	A1					
	Speed at C is $9.16 \mathrm{ms}^{-1}$	A1					

F	Page 6	Mark Sc	Syllabus	Paper			
		Cambridge International AS/A Level – October/November 2015					42
5	(i)		M1		For applying Newton 2^{nd} law to <i>P</i> or to <i>Q</i> or for applying N2 to the system		
		$0.5g \times \frac{7}{25} - T = 0.5a$ T - 0.1g = 0.1a 1.4 - 1 = 0.6a	A1		Any two correct Allow sin 16.3 for 7/25		
		For eliminating <i>T</i> and obtaining $a = \frac{2}{3} \text{ ms}^{-2}$	B1				
		T · · · 1 0511	M1	-	For substituting for	a to find T	
		Tension is 1.07 N	Al	5	Allow $T = 16/15$ N		
	(ii)	$[v^2 = 2 \times \left(\frac{2}{3}\right) \times 0.7]$	M1		For using $v^2 = u^2 + 2as$ to find the speed of the particles immediately before the string breaks		
		$[2^{2} = 2 \times \frac{2}{3} \times 0.7 + 2 \times 0.28g \times s]$	M1		For applying $v^2 = u^2 + 2as$ for the motion of <i>P</i> when the string is slack and <i>s</i> is the distance travelled by <i>P</i> after the break until it reaches the floor		
		Length of string = $2.5 - s = 1.95$ m	A1	3	Allow length = $41/$	21 m	
6	(i)	$[0.195\cos\theta = F]$	M1		For resolving force	s horizontall	у
		$F = 0.195\cos 22.6 = 0.195 \times \frac{12}{13}$ $= 0.18 = \frac{9}{50}$	A1				
		$[R = 0.24 + 0.195 \sin \theta]$ R = 0.24 + 0.195 sin 22.6 =	M1		For resolving force	s vertically	
		$0.24 + 0.195 \times \frac{5}{13} = 0.315$ $= \frac{63}{200}$	A1				
			M1		For using $\mu = F/R$		
		Coefficient $\mu = 4/7$ or 0.571	A1	6			

Page 7	Mark Sc	Syllabus	Paper				
	Cambridge International AS/A Level – October/Nove			/November 2015	9709	42	
(ii)	$R = 0.24 - 0.195 \sin 22.6$ = 0.24 - 0.195 × $\frac{5}{13}$ = 0.165 = $\frac{33}{200}$	B1					
		M1		For using Newton's second law for motion along the rod			
	$0.195 \times \frac{12}{13} - \left(\frac{4}{7}\right) \times 0.165$ = 0.024 <i>a</i>	A1					
	Acceleration is $3.57 \mathrm{ms}^{-2}$	A1	4	Allow acceleration	= 25/7		
7 (i)	$[WD = 14000 \times 25]$	M1		For using $P = WD$	$-\Delta t$		
	Work done is 350 kJ or 350 000 J	A1	2				
(ii)		M1		For using $DF = P/v$ and Newton's 2 nd law to find the speed of the car at A or at B			
	$14000/v_{\rm A} - 235 = 1600 \times 0.5 \rightarrow v_{\rm A} = 13.53 \text{ ms}^{-1}$	A1		$v_{\rm A} = 2800/207$			
	$14000 / v_{\rm B} - 235 = 1600 \times 0.25 \rightarrow v_{\rm B} = 22.05 \text{ ms}^{-1}$	A1		$v_{\rm B} = 2800/127$			
	[KE gain = $\frac{1}{2}$ 1600(22.05 ² - 13.53 ²)]	M1		For using KE gain = $\frac{1}{2} m(v_{\rm B}^2 - v_{\rm B}^2)$	_A ²)		
	KE gain = 242.5 kJ or 242 500 J	A1	5				
(iii)		M1		For using WD by D = KE gain + re	0F esistance × A	В	
	$350000 = 242500 + 235 \times AB$	A1√ [^]					
	Distance <i>AB</i> is 457 m	A1	3				