Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

1 (i)	$\begin{aligned} & 15+F \cos 60^{\circ}=F \cos 30^{\circ} \\ & F=41.0 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { A1 } \end{gathered}$	3	For resolving forces in the x direction $\mathbf{A G} \quad F=15(1+\sqrt{3})$
(ii)	$\left[G=F\left(\sin 30^{\circ}+\sin 60^{\circ}\right)\right]$ $G=56.0$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	2	For resolving forces in the y direction Allow $15(2+\sqrt{3})$
2 (i)	$\left[V^{2}=(V-10)^{2}+2 g \times 35\right]$ $\begin{aligned} & 20 V=100+70 g \\ & V=40 \end{aligned}$	M1 A1 A1	3	For using $v^{2}=u^{2}+2 g s$ to obtain an equation in V only or to obtain two equations in V and H and attempting to eliminate H
Alternative for 2(i)				
(i)	$\begin{aligned} & V=V-10+10 t \rightarrow t=1 \text { and } \\ & 35=(V-10) \times 1+1 / 2 \times 10 \times 1^{2} \text { or } \\ & 35=(V-10+V) / 2 \times 1 \\ & V=40 \end{aligned}$	M1 A1 A1	3	A complete method to find V by considering the final 35 m using $v=u+a t$ and either $s=u t+1 / 2 a t^{2} \text { or } s=(u+v) / 2 \times t$
(ii)	$\begin{aligned} & {\left[40^{2}=0^{2}+20 H\right]} \\ & H=80 \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $v^{2}=u^{2}+2 g s$
3 (i)	$\begin{aligned} {[a(t)} & \left.=0.00012 t^{2}-0.012 t+0.288\right] \\ {[a(t)} & =0.00012\left(t^{2}-100 t+2400\right) \\ & =0.00012(t-40)(t-60)=0] \\ a(t) & =0 \text { when } t=40 \text { and } t=60 \end{aligned}$	M1* dM1* A1	3	For attempting to differentiate $v(t)$ For setting $a(t)=0$ and attempting to solve a three term quadratic
(ii)	$\begin{aligned} & {\left[0.00001 t^{4}-0.002 t^{3}+0.144 t^{2}\right]} \\ & {\left[0.00001(100)^{4}-0.002(100)^{3}+\right.} \\ & \left.0.144(100)^{2}\right] \end{aligned}$ Displacement is 440 m	$\begin{gathered} \text { M1 } \dagger \\ \text { dM1 } \dagger \\ \text { A1 } \end{gathered}$	3	For attempting to integrate $v(t)$ Integration attempted using correct limits t $=0 \text { to } t=100$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

4	$\begin{aligned} \text { Frictional force } & =0.4 \times 2 \cos 45 \\ & =0.4 \sqrt{2} \end{aligned}$ KE gain $=1 / 2 \times 0.2 \times V_{\mathrm{C}}^{2}$ and PE loss $=0.2 \times g \times(2.5+2 \sqrt{2})$ $0.1 V_{\mathrm{C}}^{2}=(5+4 \sqrt{2})-0.4 \sqrt{2} \times 4$ Speed at C is $9.16 \mathrm{~ms}^{-1}$	M1 A1 B1 M1 A1	6	For using $R=2 \cos 45^{\circ}$ and $F=\mu R$ For using KE gain from A to C $=$ PE loss from A to C - Work done by frictional force

First alternative for the last four marks

Second alternative for the last four marks

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level - October/November 2015	9709	42

\begin{tabular}{|c|c|c|c|c|}
\hline 5 (i) \& \begin{tabular}{l}
\[
\begin{aligned}
\& 0.5 g \times \frac{7}{25}-T=0.5 a \\
\& T-0.1 g=0.1 a \\
\& 1.4-1=0.6 a
\end{aligned}
\] \\
For eliminating \(T\) and obtaining
\[
a=\frac{2}{3} \mathrm{~ms}^{-2}
\] \\
Tension is 1.07 N
\end{tabular} \& M1

A1

B1
M1

A1 \& 5 \& | For applying Newton $2^{\text {nd }}$ law to P or to Q or for applying N 2 to the system |
| :--- |
| Any two correct |
| Allow $\sin 16.3$ for $7 / 25$ |
| For substituting for a to find T |
| Allow $T=16 / 15 \mathrm{~N}$ | \\

\hline (ii) \& | $\left[v^{2}=2 \times\left(\frac{2}{3}\right) \times 0.7\right]$ $\left[2^{2}=2 \times \frac{2}{3} \times 0.7+2 \times 0.28 g \times s\right]$ |
| :--- |
| Length of string $=2.5-s=1.95 \mathrm{~m}$ | \& | M1 |
| :--- |
| M1 |
| A1 | \& 3 \& | For using $v^{2}=u^{2}+2$ as to find the speed of the particles immediately before the string breaks |
| :--- |
| For applying $v^{2}=u^{2}+2 a s$ for the motion of P when the string is slack and s is the distance travelled by P after the break until it reaches the floor |
| Allow length $=41 / 21 \mathrm{~m}$ | \\

\hline 6 (i) \& | $\begin{aligned} & {[0.195 \cos \theta=F]} \\ & \begin{aligned} F & =0.195 \cos 22.6=0.195 \times \frac{12}{13} \\ & =0.18=\frac{9}{50} \\ {[R} & =0.24+0.195 \sin \theta] \\ R & =0.24+0.195 \sin 22.6= \\ 0.24 & +0.195 \times \frac{5}{13}=0.315 \\ \quad & =\frac{63}{200} \end{aligned} \end{aligned}$ |
| :--- |
| Coefficient $\mu=4 / 7$ or 0.571 | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| M1 |
| A1 | \& 6 \& | For resolving forces horizontally |
| :--- |
| For resolving forces vertically |
| For using $\mu=F / R$ | \\

\hline
\end{tabular}

Page 7 Mark Scheme

Cambridge International AS/A Level - October/November 2015
Syllabus
Paper
Cambridge International AS/A Leval OctoberlNovamber 2015
42

(ii)	$\begin{aligned} & R=0.24-0.195 \sin 22.6 \\ &=0.24-0.195 \times \frac{5}{13} \\ &=0.165=\frac{33}{200} \\ & \\ & 0.195 \times \frac{12}{13}-\left(\frac{4}{7}\right) \times 0.165 \\ & \quad=0.024 a \end{aligned}$ Acceleration is $3.57 \mathrm{~ms}^{-2}$	B1 M1 A1 A1	4	For using Newton's second law for motion along the rod Allow acceleration $=25 / 7$
$7 \quad$ (i)	$[\mathrm{WD}=14000 \times 25]$ Work done is 350 kJ or 350000 J	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	2	For using $P=\mathrm{WD} \div \Delta t$
(ii)	$\begin{gathered} 14000 / v_{\mathrm{A}}-235=1600 \times 0.5 \rightarrow \\ v_{\mathrm{A}}=13.53 \mathrm{~ms}^{-1} \\ 14000 / v_{\mathrm{B}}-235=1600 \times 0.25 \rightarrow \\ v_{\mathrm{B}}=22.05 \mathrm{~ms}^{-1} \\ {[\text { KE gain }=} \\ \left.1 / 21600\left(22.05^{2}-13.53^{2}\right)\right] \\ \text { KE gain }=242.5 \mathrm{~kJ} \text { or } 242500 \mathrm{~J} \end{gathered}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A11 } \end{aligned}$	5	For using DF $=P / v$ and Newton's $2^{\text {nd }}$ law to find the speed of the car at A or at B $v_{\mathrm{A}}=2800 / 207$ $v_{\mathrm{B}}=2800 / 127$ For using KE gain $=1 / 2 m\left(v_{\mathrm{B}}^{2}-v_{\mathrm{A}}^{2}\right)$
(iii)	$350000=242500+235 \times A B$ Distance $A B$ is 457 m	M1 A1 $\sqrt{\wedge}$ A1	3	For using WD by DF $=\mathrm{KE}$ gain + resistance $\times A B$

