Page 4		4 Mark Sch	Syllabus	Paper				
		Cambridge International AS/A Lev	Cambridge International AS/A Level – October/November 2015					
1	(i)	$200g \times 0.7$	M1		For using WD = $mg \times h$			
		Work done = 1400 J	A1	2				
	(ii)	1400/1.2	M1		For using Power =	= WD/Time		
		Average Power = 1170 W	A1√ [^]	2				
2	(i)	$a = g \sin 30 = 5$	B1					
		2.5 = 0 + 5t	M1		Using $v = u + at$			
		t = 0.5 Time = 0.5 s	A1	3				
	(ii)	$v^2 = 0 + 2 \times 5 \times 3 = 30$	B 1					
		$-1 = 0.5a \rightarrow a = -2$			For applying New	vton's second	l law to the	
		$0 = 30 + 2 \times (-2) \times s$	M1		$v^2 = u^2 + 2as$,		
		Distance = 7.5 m	A1	3				
		First alternative method for 2(ii)						
		$v^2 = 0 + 2 \times 5 \times 3 = 30$	B 1					
		$0.5 \times 0.5 \times 30 = 1 \times \text{distance}$	M1		KE lost = WD ag	KE lost = WD against Friction		
		Distance = 7.5 m	A1	3				
		Second alternative method for 2(ii)						
		$PE lost = 0.5 \times 10 \times 3 sin 30 = 7.5$	B 1		Using PE lost = n	ıgh		
		$7.5 = 1 \times \text{distance}$	M1		PE lost = WD aga	ainst Friction		
		Distance = 7.5 m	A1	3				
3	(i)		M1		For applying New lorry up the hill	vton's second	l law to the	
		$F - 24000g \sin 3 - 3200 = 24000 \times (0.2)$	A1		[F = 20561]			
		$Power = Fv = 20561 \times 25$	M1		Using $P = Fv$			
		Power = 514 kW	A1	4				
	(ii)	$DF = 3200 + 24000g \sin 3$ [=15761]	M1		Using Newton's s the steady case	second law u	p the hill in	
		$v = 500000 / 15761 = 31.7 \mathrm{ms}^{-1}$	A1	2	P = Fv so $v = P/I$	F		

Page	5 Mark S	Syllabus	Paper			
	Cambridge International AS/A	Cambridge International AS/A Level – October/November 2015				
4	$F = 0.2 \times mg \cos 35$	B1 Maximum value			of F	
		M1		For resolving forces along the plane in either case		
	$5g - mg\sin 35 - 0.2 mg\cos 35$ $= 0$	A1		Equilibrium, on the point of moving up the plane		
	$5g - Mg \sin 35 + 0.2 Mg \cos 35 = 0$	A1		Equilibrium, on the point of moving down the plane		
	m = 6.78 or $M = 12.2$	M1		For solving either		
	6.78 ≤ mass ≤ 12.2	A1	6			
5 (i)		M1		For resolving force vertically	ces either hor	rizontally or
	$F\cos 70 + 20 - 10\cos 30$ = $R\cos 15$	A1				
	$10\sin 30 - F\sin 70 = R\sin 15$	A1				
		M1		For solving simul	taneously	
	F = 1.90 N and $R = 12.4 N$	A1	5			
	Alternative method for 5(i)					
	[X = 0.342 F + 11.34 Y = 0.94 F - 5]	M1		For finding comp the <i>x</i> and <i>y</i> direction	onents of the	forces in
	$(0.342 F + 11.34)^{2} + (0.94 F - 5)^{2}$ $= R^{2}$	A1				
	$\tan 15 = (5 - 0.94F) / (0.342F + 11.34)$	A1				
		M1		Solve the tan 15 e substitute to find	equation for <i>R</i>	F and
	F = 1.90 N and $R = 12.4$ N	A1	5			
(ii)	$11.7^2 = 0 + 2a \times 3$					
	<i>a</i> = 22.815	B 1				
	$R\cos 15 = m \times 22.815$	M1		Applying Newton particle in direction	n's second lav on <i>AB</i>	w to the
	Mass of bead = 0.526 kg	A1	3			

Page 6		Mark Sch	Syllabus Paper					
Cambridge International AS/A Level – October/			tober/N	November 2015 9709 41				
6 (i)	<i>s</i> :	$= 0.3t^2 - 0.01t^3$	M1		For integration			
	s($(5) = 0.3 \times 5^2 - 0.01 \times 5^3 = 6.25$	A1					
	а	= 0.6 - 0.06t	M1		For differentiation			
	a($(5) = 0.6 - 0.0 \times 5 = 0.3 \text{ ms}^{-2}$	A1	4				
(ii)	M	faximum velocity is when $0.6 - 0.06t = 0$	M1		For setting $a = 0$			
	[<i>t</i>	= 10]	M1		For solving $a = 0$			
	Μ	fax velocity = 3 ms^{-1}	A1					
	0.	$6t - 0.03t^2 = 1.5$			Setting velocity = half its maximum and			
	[ť	$(2^{2}-20t+50=0]$	M1		aucompting to solve a tillee term quadratic			
	T	imes are 2.93 s	A1					
		and 17.07 s	A1	6				

Page 7		Mark Scheme					Paper
		Cambridge International AS/A Level – October/November 2015				9709	41
7 (i)	30	$6 = 0 + 0.5 \times 0.5t^2$					
	<i>t</i> =	= 12	B 1				
	v v	= 6	B1				
	S	= 6 × 25					
	re	maining distance = 210 - 36 - 150 = 24	B 1				
	24	$4 = (6+0)/2 \times t$	M1		Using $s = (u + v)t$	*/2	
	t =	= 8					
	Т	otal Time = $12 + 25 + 8 = 45$ s	A1	5			
(ii)	D	istance travelled by cyclist = $36 + 6(t - 12)$	M1		For attempting dia cyclist for $t > 12$	stance travell	ed by
	D	istance travelled by car = $0.5 \times 4 \times (t - 24)^2$	M1		For attempting di	stance travell	ed by car
	21	$t^2 - 96t + 1152$ = 36 + 6t - 72			Equating expressions solve a three term	ions and atter quadratic eq	npting to Juation
	[<i>ť</i>	$t^{2} - 51t + 594 = 0$]	M1				
	t =	= 33 or t = 18	A1				
	T	ime = 33 s	B 1	5	Choosing the corr	rect solution	