| Page 4 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2015 | 9709 | 41 |


| 1 (i) | $200 g \times 0.7$ <br> Work done $=1400 \mathrm{~J}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For using WD $=m g \times h$ |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | $1400 / 1.2$ <br> Average Power $=1170 \mathrm{~W}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | For using Power $=$ WD/Time |
| 2 (i) | $\begin{aligned} & a=g \sin 30=5 \\ & 2.5=0+5 t \\ & t=0.5 \quad \text { Time }=0.5 \mathrm{~s} \end{aligned}$ | B1 <br> M1 <br> A1 | 3 | Using $v=u+a t$ |
| (ii) | $\begin{aligned} & v^{2}=0+2 \times 5 \times 3=30 \\ & -1=0.5 a \rightarrow a=-2 \\ & 0=30+2 \times(-2) \times s \\ & \text { Distance }=7.5 \mathrm{~m} \end{aligned}$ | > B1 <br> M1 <br> A1 | 3 | For applying Newton's second law to the particle and using $v^{2}=u^{2}+2 a s$ |
|  | $\begin{aligned} & v^{2}=0+2 \times 5 \times 3=30 \\ & 0.5 \times 0.5 \times 30=1 \times \text { distance } \\ & \text { Distance }=7.5 \mathrm{~m} \end{aligned}$ | rnativ <br> B1 <br> M1 <br> A1 | eth | for 2(ii) <br> KE lost = WD against Friction |
|  | PE lost $=0.5 \times 10 \times 3 \sin 30=7.5$ <br> $7.5=1 \times$ distance <br> Distance $=7.5 \mathrm{~m}$ | B1 <br> M1 <br> A1 | net | d for 2(ii) <br> Using PE lost $=m g h$ <br> PE lost $=\mathrm{WD}$ against Friction |
| 3 (i) | $\begin{aligned} & F-24000 \mathrm{~g} \sin 3-3200= \\ & 24000 \times(0.2) \\ & \text { Power }=F v=20561 \times 25 \\ & \text { Power }=514 \mathrm{~kW} \end{aligned}$ | M1 <br> A1 <br> M1 <br> A1 | 4 | For applying Newton's second law to the lorry up the hill $[F=20561]$ <br> Using $P=F v$ |
| (ii) | $\begin{aligned} & \mathrm{DF}=3200+24000 g \sin 3 \\ & \quad[=15761] \\ & v=500000 / 15761=31.7 \mathrm{~ms}^{-1} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 2 | Using Newton's second law up the hill in the steady case $P=F v \text { so } v=P / F$ |


| Page 5 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2015 | 9709 | 41 |


| 4 | $\begin{aligned} & F=0.2 \times m g \cos 35 \\ & \\ & \begin{array}{l} 5 g-m g \sin 35-0.2 \mathrm{mg} \cos 35 \\ \quad=0 \end{array} \\ & \begin{array}{l} 5 g-M g \sin 35+0.2 \mathrm{Mg} \cos 35 \\ \quad=0 \end{array} \\ & \begin{array}{c} m=6.78 \text { or } M=12.2 \\ 6.78 \leqslant \operatorname{mass} \leqslant 12.2 \end{array} \end{aligned}$ | B1 <br> M1 <br> A1 <br> A1 <br> M1 <br> A1 | 6 | Maximum value of $F$ <br> For resolving forces along the plane in either case <br> Equilibrium, on the point of moving up the plane <br> Equilibrium, on the point of moving down the plane <br> For solving either |
| :---: | :---: | :---: | :---: | :---: |
| 5 (i) | $\begin{aligned} & F \cos 70+20-10 \cos 30 \\ & \quad=R \cos 15 \\ & 10 \sin 30-F \sin 70=R \sin 15 \\ & \\ & F=1.90 \mathrm{~N} \text { and } R=12.4 \mathrm{~N} \end{aligned}$ | $\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$ | 5 | For resolving forces either horizontally or vertically <br> For solving simultaneously |
|  | $\begin{aligned} & {[X=0.342 F+11.34} \\ & Y=0.94 F-5] \end{aligned}$ $\begin{aligned} & (0.342 F+11.34)^{2}+(0.94 F-5)^{2} \\ & \quad=R^{2} \end{aligned}$ <br> $\tan 15$ $=(5-0.94 F) /(0.342 F+11.34)$ $F=1.90 \mathrm{~N} \text { and } R=12.4 \mathrm{~N}$ | tive <br> M1 <br> A1 <br> A1 <br> M1 <br> A1 | hod | 5(i) <br> For finding components of the forces in the $x$ and $y$ directions <br> Solve the $\tan 15$ equation for $F$ and substitute to find $R$ |
| (ii) | $\begin{aligned} & 11.7^{2}=0+2 a \times 3 \\ & a=22.815 \\ & R \cos 15=m \times 22.815 \\ & \text { Mass of bead }=0.526 \mathrm{~kg} \end{aligned}$ | B1 M1 A1 | 3 | Applying Newton's second law to the particle in direction $A B$ |


| Page 6 | Mark Scheme | Syllabus | Paper |
| :---: | :---: | :---: | :---: |
|  | Cambridge International AS/A Level - October/November 2015 | 9709 | 41 |


| 6 (i) | $s=0.3 t^{2}-0.01 t^{3}$ $s(5)=0.3 \times 5^{2}-0.01 \times 5^{3}=6.25$ $a=0.6-0.06 t$ $a(5)=0.6-0.0 \times 5=0.3 \mathrm{~ms}^{-2}$ | M1 <br> A1 <br> M1 <br> A1 | 4 | For integration <br> For differentiation |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | Maximum velocity is when $0.6-0.06 t=0$ $[t=10]$ <br> Max velocity $=3 \mathrm{~ms}^{-1}$ <br> $0.6 t-0.03 t^{2}=1.5$ $\left[t^{2}-20 t+50=0\right]$ <br> Times are 2.93 s <br> and 17.07 s | M1 <br> M1 <br> A1 <br> M1 <br> A1 <br> A1 | 6 | For setting $a=0$ <br> For solving $a=0$ <br> Setting velocity $=$ half its maximum and attempting to solve a three term quadratic |

## Page 7 Mark Scheme

Syllabus
Paper
Cambridge International AS/A Level - October/November 2015

| 7 (i) | $\begin{aligned} & 36=0+0.5 \times 0.5 t^{2} \\ & t=12 \\ & v^{2}=0+2 \times 0.5 \times 36 \\ & v=6 \\ & s=6 \times 25 \\ & \text { remaining distance } \\ & \quad=210-36-150=24 \\ & 24=(6+0) / 2 \times t \\ & t=8 \end{aligned}$ <br> Total Time $=12+25+8=45 \mathrm{~s}$ | B1 <br> B1 <br> B1 <br> M1 <br> A1 | 5 | Using $s=(u+v) t / 2$ |
| :---: | :---: | :---: | :---: | :---: |
| (ii) | Distance travelled by cyclist $=36+6(t-12)$ <br> Distance travelled by car $\begin{aligned} & \quad=0.5 \times 4 \times(t-24)^{2} \\ & 2 t^{2}-96 t+1152 \\ & \quad=36+6 t-72 \\ & {\left[t^{2}-51 t+594=0\right]} \\ & t=33 \text { or } t=18 \\ & \text { Time }=33 \mathrm{~s} \end{aligned}$ | M1 <br> M1 <br> M1 <br> A1 <br> B1 | 5 | For attempting distance travelled by cyclist for $t>12$ <br> For attempting distance travelled by car <br> Equating expressions and attempting to solve a three term quadratic equation <br> Choosing the correct solution |

