Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	33

1 Draw curve with increasing gradient existing for negative and positive values of x
Draw correct curve passing through the origin

2 Either State correct unsimplified x^{2} or x^{3} term
Obtain $a=-9$
Obtain $b=45$

Or Use chain rule to differentiate twice to obtain form $k(1+9 x)^{-\frac{5}{3}}$
M1
Obtain $\mathrm{f}^{\prime \prime}(x)=-18(1+9 x)^{-\frac{5}{3}}$ and hence $a=-9$
Obtain $\mathrm{f}^{\prime \prime \prime}(x)=270(1+9 x)^{-\frac{8}{3}}$ and hence $b=45$

Obtain $\frac{-(1+\tan x) \sec ^{2} x-\sec ^{2} x(2-\tan x)}{(1+\tan x)^{2}}$ or equivalent
Substitute $x=\frac{1}{4} \pi$ to find gradient
dep M1*
Obtain $-\frac{3}{2}$
Form equation of tangent at $x=\frac{1}{4} \pi$
Obtain $y=-\frac{3}{2} x+1.68$ or equivalent

4 (i) Use $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\dot{y}}{\dot{x}}$ and equate $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to 4
M1
Obtain $\frac{4 p^{3}}{2 p+3}=4$ or equivalent
Confirm given result $p=\sqrt[3]{2 p+3}$ correctly
(ii) Evaluate $p-\sqrt[3]{2 p+3}$ or $p^{3}-2 p-3$ or equivalent at 1.8 and 2.0

M1
Justify result with correct calculations and argument
(-0.076 and 0.087 or -0.77 and 1 respectively)
A1
(iii) Use the iterative process correctly at least once with $1.8 \leqslant p_{n} \leqslant 2.0$

Obtain final answer 1.89
Show sufficient iterations to at least 4 d.p. to justify 1.89 or show sign change in interval (1.885, 1.895)

5 State $\mathrm{d} u=3 \sin x \mathrm{~d} x$ or equivalent
Use identity $\sin 2 x=2 \sin x \cos x$
Carry out complete substitution, for x and $\mathrm{d} x$ M1
Obtain $\int \frac{8-2 u}{\sqrt{u}} \mathrm{~d} u$,or equivalent
Integrate to obtain expression of form $a u^{\frac{1}{2}}+b u^{\frac{3}{2}}, a b \neq 0$
Obtain correct $16 u^{\frac{1}{2}}-\frac{4}{3} u^{\frac{3}{2}}$
Apply correct limits correctly
Obtain $\frac{20}{3}$ or exact equivalent

6 State or imply $\sin A \times \cos 45+\cos A \times \sin 45=2 \sqrt{2} \cos A \quad$ B1
Divide by $\cos A$ to find value of $\tan A$ M1
Obtain $\tan A=3 \quad$ A1
Use identity $\sec ^{2} B=1+\tan ^{2} B$
Solve three-term quadratic equation and find $\tan B$ M1
Obtain $\tan B=\frac{3}{2}$ only
Substitute numerical values in $\frac{\tan A-\tan B}{1+\tan A \tan B}$ M1

Obtain $\frac{3}{11}$ A1

7 (i) Either Substitute $x=-1$ and evaluate
Obtain 0 and conclude $x+1$ is a factor
Or Divide by $x+1$ and obtain a constant remainder M1
Obtain remainder $=0$ and conclude $x+1$ is a factor
(ii) Attempt division, or equivalent, at least as far as quotient $4 x^{2}+k x$ M1

Obtain complete quotient $4 x^{2}-5 x-6$
State form $\frac{A}{x+1}+\frac{B}{x-2}+\frac{C}{4 x+3}$
Use relevant method for finding at least one constant M1
Obtain one of $A=-2, B=1, C=8 \quad$ A1
Obtain all three values A1
Integrate to obtain three terms each involving natural logarithm of linear form M1
Obtain $-2 \ln (x+1)+\ln (x-2)+2 \ln (4 x+3)$, condoning no use of modulus signs and absence of $\ldots+c$

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	$\mathbf{9 7 0 9}$	33

8 (i) Express a general point on the line in single component form, e.g. $(\lambda, 2-3 \lambda,-8+4 \lambda)$, substitute in equation of plane and solve for λ
Obtain $\lambda=3$
Obtain (3, -7, 4)
(ii) State or imply normal vector to plane is $4 \mathbf{i}-\mathbf{j}+5 \mathbf{k}$

Carry out process for evaluating scalar product of two relevant vectors
Using the correct process for the moduli, divide the scalar product by the product of the moduli and evaluate $\sin ^{-1}$ or $\cos ^{-1}$ of the result.
Obtain 54.8° or 0.956 radians
(iii) Either Find at least one position of C by translating by appropriate multiple of direction vector $\mathbf{i}-3 \mathbf{j}+4 \mathbf{k}$ from A or B
Obtain ($-3,11,-20$) A1
Obtain ($9,-25,28$)
Or Form quadratic equation in λ by considering $B C^{2}=4 A B^{2}$ M1
Obtain $26 \lambda^{2}-156 \lambda-702=0$ or equivalent and hence $\lambda=-3, \lambda=9$
Obtain $(-3,11,-20)$ and $(9,-25,28)$

9 (a) Either Find w using conjugate of $1+3 \mathrm{i}$
Obtain $\frac{7-\mathrm{i}}{5}$ or equivalent
Square $x+\mathrm{i} y$ form to find w^{2}
Obtain $w^{2}=\frac{48-14 \mathrm{i}}{25}$ and confirm modulus is 2
Use correct process for finding argument of w^{2}
Obtain -0.284 radians or -16.3° A1
Or 1 Find w using conjugate of $1+3 \mathrm{i}$ M1
Obtain $\frac{7-i}{5}$ or equivalent
Find modulus of w and hence of $w^{2} \quad$ M1
Confirm modulus is 2 A1
Find argument of w and hence of $w^{2} \quad$ M1
Obtain -0.284 radians or $-16.3^{\circ} \quad$ A1
Or 2 Square both sides to obtain $(-8+6 \mathrm{i}) w^{2}=-12+16 \mathrm{i} \quad$ B1
Find w^{2} using relevant conjugate M1
Use correct process for finding modulus of $w^{2} \quad$ M1
Confirm modulus is 2 A1
Use correct process for finding argument of $w^{2} \quad$ M1
Obtain -0.284 radians or -16.3° A1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	33

Or 3 Find modulus of LHS and RHS M1
Find argument of LHS and RHS M1
Obtain $\sqrt{10} \mathrm{e}^{1.249 \mathrm{i}} w=\sqrt{20} \mathrm{e}^{1.107 \mathrm{i}}$ or equivalent A1

Obtain $w=\sqrt{2} \mathrm{e}^{-0.1419 \mathrm{i}}$ or equivalent
A1
Use correct process for finding w^{2} M1
Obtain 2 and -0.284 radians or -16.3° A1

Or 4 Find moduli of $2+4 \mathrm{i}$ and $1+3 \mathrm{i}$ M1
Obtain $\sqrt{20}$ and $\sqrt{10}$ A1
Obtain $\left|w^{2}\right|=2$ correctly A1
Find $\arg (2+4 \mathrm{i})$ and $\arg (1+3 \mathrm{i})$ M1
Use correct process for $\arg \left(w^{2}\right)$ A1
Obtain -0.284 radians or -16.3° A1

Or 5 Let $w=a+\mathrm{i} b$, form and solve simultaneous equations in a and b M1
$a=\frac{7}{5}$ and $b=-\frac{1}{5}$
Find modulus of w and hence of w^{2}
Confirm modulus is 2 M1

Find argument of w and hence of w^{2} A1

Obtain -0.284 radians or $-16.3^{\circ} \quad$ A1 M1

Or 6 Find w using conjugate of $1+3 \mathrm{i}$ M1
Obtain $\frac{7-\mathrm{i}}{5}$ or equivalent
Use $\left|w^{2}\right|=w \bar{w}$ M1

Confirm modulus is 2 A1
Find argument of w and hence of w^{2} M1
Obtain -0.284 radians or -16.3° A1
(b) Draw circle with centre the origin and radius $5 \quad$ B1

Use relevant trigonometry on a correct diagram to find argument(s) M1
Obtain $5 \mathrm{e}^{ \pm \frac{1}{3} \pi i}$ or equivalents in required form A1

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	33

10 (i) State $\frac{\mathrm{d} N}{\mathrm{~d} t}=k(N-150)$
B1 [1]
(ii) Substitute $\frac{\mathrm{d} N}{\mathrm{~d} t}=60$ and $N=900$ to find value of $k \quad$ M1

Obtain $k=0.08$
A1
Separate variables and obtain general solution involving $\ln (N-150)$
Obtain $\ln (N-150)=0.08 t+c$ (following their k) or $\ln (N-150)=k t+c$
Substitute $t=0$ and $N=650$ to find c
dep M1*
Obtain $\ln (N-150)=0.08 t+\ln 500$ or equivalent A1
Obtain $N=500 \mathrm{e}^{0.08 t}+150$
A1
(iii) Either Substitute $t=15$ to find N or solve for t with $N=2000$ M1
Obtain Either $N=1810$ or $t=16.4$ and conclude target not met A1

