Page 4		Mark Scheme		Paper	
		Cambridge International A Level – October/November 2015	9709	33	
1	Draw	Draw curve with increasing gradient existing for negative and positive values of		M1	
	Draw	v correct curve passing through the origin		A1	[2]
2	Eithe	<u>r</u> State correct unsimplified x^2 or x^3 term Obtain $a = -9$ Obtain $b = 45$		M1 A1 A1	
	<u>Or</u>	Use chain rule to differentiate twice to obtain form $k(1+9x)^{-\frac{5}{3}}$		M1	
		Obtain $f''(x) = -18(1+9x)^{-3}$ and hence $a = -9$ Obtain $f'''(x) = 270(1+9x)^{-\frac{8}{3}}$ and hence $b = 45$		A1 A1	[3]
3	Use o Obta	correct quotient rule or equivalent to find first derivative in $\frac{-(1 + \tan x)\sec^2 x - \sec^2 x(2 - \tan x)}{(1 + \tan x)^2}$ or equivalent		M1* A1	
	Subs	titute $x = \frac{1}{4}\pi$ to find gradient	dep	M1*	
	Obta	$\sin -\frac{3}{2}$		A1	
	Form	equation of tangent at $x = \frac{1}{4}\pi$		M1	
	Obta	in $y = -\frac{3}{2}x + 1.68$ or equivalent		A1	[6]
4	(i)	Use $\frac{dy}{dx} = \frac{\dot{y}}{\dot{x}}$ and equate $\frac{dy}{dx}$ to 4		M1	
		Obtain $\frac{4p^3}{2p+3} = 4$ or equivalent		A1	
		Confirm given result $p = \sqrt[3]{2p+3}$ correctly		A1	[3]
	(ii)	Evaluate $p - \sqrt[3]{2p+3}$ or $p^3 - 2p - 3$ or equivalent at 1.8 and 2.0		M1	
		(-0.076 and 0.087 or -0.77 and 1 respectively)		A1	[2]
	(iii)	Use the iterative process correctly at least once with $1.8 \le p_n \le 2.0$ Obtain final answer 1.89 Show sufficient iterations to at least 4 d p. to justify 1.89 or show sign change it	in	M1 A1	
		interval (1.885, 1.895)		A1	[3]

Page		Mark Scheme	Syllabus	Paper	
	<u> </u>	Cambridge International A Level – October/November 2015	9709	33	;
			<u>. </u>		
5	State	$du = 3 \sin x dx$ or equivalent		B 1	
	Use	identity $\sin 2x = 2 \sin x \cos x$		B1	
	Carr	y out complete substitution, for x and dx		M1	
	Obta	$\int \frac{8-2u}{\sqrt{2}} du$, or equivalent		A1	
		\sqrt{u}			
	Integ	grate to obtain expression of form $au^{\frac{1}{2}} + bu^{\frac{3}{2}}$, $ab \neq 0$		M1*	
	Obta	in correct $16u^{\frac{1}{2}} - \frac{4}{3}u^{\frac{3}{2}}$		A1	
	Арр	ly correct limits correctly	dep	• M1*	
	Obte	$\frac{20}{10}$ or exact equivalent	-	A 1	[8]
	0012	$\frac{111}{3}$ of exact equivalent		AI	႞၀]
6	State	e or imply $\sin A \times \cos 45 + \cos A \times \sin 45 = 2\sqrt{2} \cos A$		B 1	
	Divi	de by $\cos A$ to find value of $\tan A$		M1	
	Obta	A = 3		A1	
	Use	identity $\sec^2 B = 1 + \tan^2 B$		B1	
	Solv	e three-term quadratic equation and find tan B		M1	
	Obta	$\sin \tan B = \frac{3}{2}$ only		A1	
	Subs	stitute numerical values in $\frac{\tan A - \tan B}{1 + \tan A \tan B}$		M1	
	Obta	$ \lim \frac{3}{11} $		A1	[8]
-				M	
/	(1)	Either Substitute $x = -1$ and evaluate Obtain 0 and conclude $x + 1$ is a factor			
		Obtain 0 and conclude $x + 1$ is a factor		AI	
		Or Divide by $x + 1$ and obtain a constant remainder		M1	
		Obtain remainder = 0 and conclude $x + 1$ is a factor		A1	[2]
	(ii)	Attempt division, or equivalent, at least as far as quotient $4x^2 + kx$		M1	
		Obtain complete quotient $4x^2 - 5x - 6$		A1	
		State form $\frac{A}{A} + \frac{B}{B} + \frac{C}{C}$		Δ1	
		State form $\frac{1}{x+1} + \frac{1}{x-2} + \frac{1}{4x+3}$		AI	
		Use relevant method for finding at least one constant		M1	
		Obtain one of $A = -2$, $B = 1$, $C = 8$		A1	
		Obtain all three values		A1	
		Integrate to obtain three terms each involving natural logarithm of linear form Obtain $-2\ln(x+1) + \ln(x-2) + 2\ln(4x+3)$, condoning no use of modulus s	igns	Ml	
		and absence of $\ldots + c$		A1	[8]

Page 6		6	Mark Scheme Syllabus		Paper	
		Ca	ambridge International A Level – October/November 2015	9709	33	
8	(i)	Express	a general point on the line in single component form, e.g. $(\lambda, 2 - 3\lambda)$	$(8+4\lambda)$.		
	(-)	substitut	te in equation of plane and solve for λ	o :),	M1	
		Obtain .	$\lambda = 3$		A1	
		Obtain	(3, -7, 4)		A1	[3]
	(ii)	State or	imply normal vector to plane is $4\mathbf{i} - \mathbf{i} + 5\mathbf{k}$		R1	
	(11)	Carry ou	at process for evaluating scalar product of two relevant vectors		M1	
		Using th	ne correct process for the moduli, divide the scalar product by the produ	ıct		
		of the m	oduli and evaluate \sin^{-1} or \cos^{-1} of the result.		M1	
		Obtain :	54.8° or 0.956 radians		A1	[4]
	(iii)	Either	Find at least one position of <i>C</i> by translating by appropriate multiple			
			of direction vector $\mathbf{i} - 3\mathbf{j} + 4\mathbf{k}$ from A or B		M1	
			Obtain $(-3, 11, -20)$		Al	
			Obtain $(9, -25, 28)$		Al	
		<u>Or</u>	Form quadratic equation in λ by considering $BC^2 = 4AB^2$		M1	
			Obtain $26\lambda^2 - 156\lambda - 702 = 0$ or equivalent and hence $\lambda = -3, \lambda = 9$		A1	
			Obtain (-3,11, -20) and (9, -25,28)		A1	[3]
9	(a)	Either	Find w using conjugate of $1+3i$		M1	
			Obtain $\frac{7-1}{5}$ or equivalent		A1	
			Square $x + iy$ form to find w^2		M1	
			Obtain $w^2 = \frac{48 - 14i}{25}$ and confirm modulus is 2		A1	
			Use correct process for finding argument of w^2		M1	
			Obtain –0.284 radians or –16.3°		A1	
		<u>Or 1</u>	Find w using conjugate of $1 + 3i$		M1	
			Obtain $\frac{7-i}{5}$ or equivalent		A1	
			Find modulus of w and hence of w^2		M1	
			Confirm modulus is 2		A1	
			Find argument of w and hence of w^2		M1	
			Obtain -0.284 radians or -16.3°		A1	
		<u>Or 2</u>	Square both sides to obtain $(-8+6i)w^2 = -12+16i$		B 1	
			Find w^2 using relevant conjugate		M1	
			Use correct process for finding modulus of w^2		M1	
			Confirm modulus is 2		A1	
			Use correct process for finding argument of w^2		M1	
			Obtain -0.284 radians or -16.3°		A1	

Page 7	7	Mark Scheme	Syllabus	Рар	er
		Cambridge International A Level – October/November 2015	9709	33	
	Or 2	Find modulus of LUS and DUS		М1	
	<u>01 5</u>	Find argument of LHS and RHS		M1	
		Obtain $\sqrt{10} e^{1.249i} w = \sqrt{20} e^{1.107i}$ or equivalent		A1	
		Obtain $w = \sqrt{2} e^{-0.1419i}$ or equivalent		A1	
		Use correct process for finding w^2		M1	
		Obtain 2 and -0.284 radians or -16.3°		A1	
	<u>Or 4</u>	Find moduli of $2 + 4i$ and $1 + 3i$		M1	
		Obtain $\sqrt{20}$ and $\sqrt{10}$		A1	
		Obtain $ w^2 = 2$ correctly		A1	
		Find $arg(2 + 4i)$ and $arg(1 + 3i)$		M1	
		Use correct process for $\arg(w^2)$		A1	
		Obtain -0.284 radians or -16.3°		A1	
	<u>Or 5</u>	Let $w = a + ib$, form and solve simultaneous equations in a and b		M1	
		$a = \frac{7}{5}$ and $b = -\frac{1}{5}$		A1	
		Find modulus of w and hence of w^2		M1	
		Confirm modulus is 2		A1	
		Find argument of w and hence of w^2		M1	
		Obtain -0.284 radians or -16.3°		A1	
	<u>Or 6</u>	Find w using conjugate of $1 + 3i$		M1	
		Obtain $\frac{7-1}{5}$ or equivalent		A1	
		Use $ w^2 = w\overline{w}$		M1	
		Confirm modulus is 2		A1	
		Find argument of w and hence of w^2		M1	
		Obtain -0.284 radians or -16.3°		A1	[6]
(h)	Draw	circle with centre the origin and radius 5		R1	
(6)	Draw	straight line parallel to imaginary axis in correct position		B1	
	Use re	elevant trigonometry on a correct diagram to find argument(s)		M1	
	Obtai	n 5e ^{$\pm\frac{1}{3}\pi i$} or equivalents in required form		A1	[4]

Page 8		Mark Scheme	Syllabus	Paper 33	
		Cambridge International A Level – October/November 2015	9709		
10	(i)	State $\frac{\mathrm{d}N}{\mathrm{d}t} = k(N-150)$		B1	[1]
	(ii)	Substitute $\frac{dN}{dt} = 60$ and $N = 900$ to find value of k		M1	
		Obtain $k = 0.08$		A1	
		Separate variables and obtain general solution involving $\ln(N-150)$		M1*	
		Obtain $\ln(N-150) = 0.08t + c$ (following their k) or $\ln(N-150) = kt + c$		A1√	
		Substitute $t = 0$ and $N = 650$ to find c	dep	M1*	
		Obtain $\ln(N-150) = 0.08t + \ln 500$ or equivalent	•	A1	
		Obtain $N = 500e^{0.08t} + 150$		A1	[7]
	(iii)	<u>Either</u> Substitute $t = 15$ to find N or solve for t with $N = 2000$		M1	
		Obtain Either $N = 1810$ or $t = 16.4$ and conclude target not met		A1	[2]