1 EITHER: State or imply non-modular inequality $(2 x-5)^{2}>(3(2 x+1))^{2}$, or corresponding quadratic
equation, or pair of linear equations $(2 x-5)= \pm 3(2 x+1)$
B1
Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x M1
Obtain critical values -2 and $\frac{1}{4}$
State final answer $-2<x<\frac{1}{4}$
OR: Obtain critical value $x=-2$ from a graphical method, or by inspection, or by solving a linear
equation or inequality
$\begin{array}{ll}\text { Obtain critical value } x=\frac{1}{4} \text { similarly } & \text { B2 }\end{array}$
State final answer $-2<x<\frac{1}{4}$ B1
[Do not condone \leqslant for $<$]

2 State or imply $1+u=u^{2}$
B1
Solve for u M1
Obtain root $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62]
Use correct method for finding x from a positive root A1

Obtain $x=0.438$ and no other answer

3 Use $\tan (A \pm B)$ and obtain an equation in $\tan \theta$ and $\tan \phi$
M1*
Substitute throughout for $\tan \theta$ or for $\tan \phi$
Obtain $3 \tan ^{2} \theta-\tan \theta-4=0$ or $3 \tan ^{2} \phi-5 \tan \phi-2=0$, or 3-term equivalent
Solve a 3-term quadratic and find an angle M1
Obtain answer $\theta=135^{\circ}, \phi=63.4^{\circ}$ A1
Obtain answer $\theta=53.1^{\circ}, \phi=161.6^{\circ}$
[Treat answers in radians as a misread. Ignore answers outside the given interval.]
[SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ, ϕ pairs.]

4 (i) Evaluate, or consider the sign of, $x^{3}-x^{2}-6$ for two integer values of x, or equivalent
Obtain the pair $x=2$ and $x=3$, with no errors seen
(ii) State a suitable equation, e.g. $x=\sqrt{(x+(6 / x))}$

B1
Rearrange this as $x^{3}-x^{2}-6=0$, or work vice versa
B1
(iii) Use the iterative formula correctly at least once

Obtain final answer 2.219
Show sufficient iterates to 5 d.p. to justify 2.219 to 3 d.p., or show there is a sign change in the interval $(2.2185,2.2195)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	32

5 (i) State or imply that the derivative of $\mathrm{e}^{-2 x}$ is $-2 \mathrm{e}^{-2 x}$
B1
Use product or quotient rule M1
Obtain correct derivative in any form A1
Use Pythagoras M1
Justify the given form
(ii) Fully justify the given statement
(iii) State answer $x=\frac{1}{4} \pi$

B1

B1
Substitute $x=-\frac{1}{2}$ and equate the result to 1
Obtain a correct equation in any form, e.g. $-1+\frac{1}{4} a-\frac{1}{2} b-1=1$
Solve for a or for b
A1

Obtain $a=6$ and $b=-3$
M1
A1
(ii) Commence division by $(x+1)$ reaching a partial quotient $8 x^{2}+k x$

Obtain quadratic factor $8 x^{2}-2 x-1$
Obtain factorisation $(x+1)(4 x+1)(2 x-1)$
[The M1 is earned if inspection reaches an unknown factor $8 x^{2}+B x+C$ and an equation in B and/or C, or an unknown factor $A x^{2}+B x-1$ and an equation in A and/or B.]
[If linear factors are found by the factor theorem, give B1B1 for $(2 x-1)$ and $(4 x+1)$, and B1 for the complete factorisation.]

7 (i) Use correct method to form a vector equation for $A B$
Obtain a correct equation, e.g. $\mathbf{r}=\mathbf{i}+2 \mathbf{j}+\lambda(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k})$ or $\mathbf{r}=3 \mathbf{i}+\mathbf{k}+\mu(2 \mathbf{i}-2 \mathbf{j}+\mathbf{k})$
(ii) Using a direction vector for $A B$ and a relevant point, obtain an equation for m in any form

Obtain answer $2 x-2 y+z=4$, or equivalent
(iii) Express general point of $A B$ in component form, e.g. $(1+2 \lambda, 2-2 \lambda, \lambda)$ or $(3+2 \mu,-2 \mu, 1+\mu)$
Substitute in equation of m and solve for λ or for μ M1
Obtain final answer $\frac{7}{3} \mathbf{i}+\frac{2}{3} \mathbf{j}+\frac{2}{3} \mathbf{k}$ for the position vector of N, from $\quad \lambda=\frac{2}{3}$ or $\mu=-\frac{1}{3} \quad$ A1
Carry out a correct method for finding $C N$ M1
Obtain the given answer $\sqrt{13}$ A1
[The f.t. is on the direction vector for $A B$.]

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level - October/November 2015	9709	32

8 Separate variables and integrate one side B1
Obtain term $\ln (x+2)$ B1
Use $\cos 2 A$ formula to express $\sin ^{2} 2 \theta$ in the form $a+b \cos 4 \theta$ M1
Obtain correct form $(1-\cos 4 \theta) / 2$, or equivalent A1
Integrate and obtain term $\frac{1}{2} \theta-\frac{1}{8} \sin 4 \theta$, or equivalent A1 \downarrow
Evaluate a constant, or use $\theta=0, x=0$ as limits in a solution containing terms $c \ln (x+2), d \sin (4 \theta), e \theta$ M1
Obtain correct solution in any form, e.g. $\ln (x+2)=\frac{1}{2} \theta-\frac{1}{8} \sin 4 \theta+\ln 2$ A1
Use correct method for solving an equation of the form $\ln (x+2)=f$ M1
Obtain answer $x=0.962$ A1
9 (i) Show u in a relatively correct positionShow u^{*} in a relatively correct positionB1
Show $u^{*}-u$ in a relatively correct position B1State or imply that $O A B C$ is a parallelogramB1
(ii) EITHER: Substitute for u and multiply numerator and denominator by $3+\mathrm{i}$, or equivalent M1
Simplify the numerator to $8+6 \mathrm{i}$ or the denominator to 10 A1 A1
Obtain final answer $\frac{4}{5}+\frac{3}{5} \mathrm{i}$, or equivalent A1
OR: Substitute for u, obtain two equations in x and y and solve for x or for y M1
Obtain $x=\frac{4}{5}$ or $y=\frac{3}{5}$, or equivalent A1Obtain final answer $\frac{4}{5}+\frac{3}{5} \mathrm{i}$, or equivalentA1
(iii) State or imply $\arg \left(u^{*} / u\right)=\tan ^{-1}\left(\frac{3}{4}\right)$ B1Substitute exact arguments in $\arg \left(u^{*} / u\right)=\arg u^{*}-\arg u \quad$ M1Fully justify the given statement using exact valuesM1
Obtain final answer $\frac{4}{5}+\frac{3}{5} \mathrm{i}$, or equivalent
Obtain correct derivative in any form A1
Equate derivative to zero and solve for x M1
Obtain answer $x=\sqrt[3]{2}$, or exact equivalent A1
(ii) State or imply indefinite integral is of the form $k \ln \left(1+x^{3}\right)$ M1
State indefinite integral $\frac{1}{3} \ln \left(1+x^{3}\right)$ A1
Substitute limits correctly in an integral of the form $k \ln \left(1+x^{3}\right)$ M1
State or imply that the area of R is equal to $\frac{1}{3} \ln \left(1+p^{3}\right)-\frac{1}{3} \ln 2$, or equivalent A1
Use a correct method for finding p from an equation of the form $\ln \left(1+p^{3}\right)=a$
or $\ln \left(\left(1+p^{3}\right) / 2\right)=b$M1
Obtain answer $p=3.40$ A1

