Page 4	Mark Scheme	Syllabus	Pap	er
	Cambridge International A Level – October/November 2015	9709	32	
1 EITH	<i>ER</i> : State or imply non-modular inequality $(2x-5)^2 > (3(2x+1))^2$, or correspondent	oonding		
equat	on, or pair of linear equations $(2x - 5) = \pm 3(2x + 1)$		B 1	
Make	reasonable solution attempt at a 3-term quadratic, or solve two linear equatio	ns for <i>x</i>	M1	
Obtai	n critical values -2 and $\frac{1}{4}$		A1	
State	final answer $-2 < x < \frac{1}{4}$		A1	
OR: O	Obtain critical value $x = -2$ from a graphical method, or by inspection, or by s	solving a		
linear equat	on or inequality		B 1	
Obtai	n critical value $x = \frac{1}{4}$ similarly		B2	
State	final answer $-2 < x < \frac{1}{4}$		B 1	[4]
[Do n	ot condone \leq for $<$]			
2 State	or imply $1 + u = u^2$		B1	
Solve	for <i>u</i>		M1	
Obtai	n root $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62]		A1	

2		
Use correct method for finding x from a positive root	M1	
Obtain $x = 0.438$ and no other answer	A1	[5]

Use $tan(A \pm B)$ and obtain an equation in tan θ and tan ϕ	M1*	
Substitute throughout for tan θ or for tan ϕ	dep M1*	
Obtain $3\tan^2\theta - \tan\theta - 4 = 0$ or $3\tan^2\phi - 5\tan\phi - 2 = 0$, or 3-term equivalent	A1	
Solve a 3-term quadratic and find an angle	M1	
Obtain answer $\theta = 135^\circ$, $\phi = 63.4^\circ$	A1	
Obtain answer $\theta = 53.1^{\circ}, \phi = 161.6^{\circ}$	A1	[6]
[Treat answers in radians as a misread. Ignore answers outside the given interval.]		
[SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]		
	Use $\tan(A \pm B)$ and obtain an equation in $\tan \theta$ and $\tan \phi$ Substitute throughout for $\tan \theta$ or for $\tan \phi$ Obtain $3\tan^2 \theta - \tan \theta - 4 = 0$ or $3\tan^2 \phi - 5\tan \phi - 2 = 0$, or 3-term equivalent Solve a 3-term quadratic and find an angle Obtain answer $\theta = 135^\circ$, $\phi = 63.4^\circ$ Obtain answer $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ [Treat answers in radians as a misread. Ignore answers outside the given interval.] [SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]	Use $\tan(A \pm B)$ and obtain an equation in $\tan \theta$ and $\tan \phi$ M1*Substitute throughout for $\tan \theta$ or for $\tan \phi$ dep M1*Obtain $3 \tan^2 \theta - \tan \theta - 4 = 0$ or $3 \tan^2 \phi - 5 \tan \phi - 2 = 0$, or 3-term equivalentA1Solve a 3-term quadratic and find an angleM1Obtain answer $\theta = 135^\circ$, $\phi = 63.4^\circ$ A1Obtain answer $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ A1[Treat answers in radians as a misread. Ignore answers outside the given interval.]A1[SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]A1

4	(i)	Evaluate, or consider the sign of, $x^3 - x^2 - 6$ for two integer values of x, or equivalent Obtain the pair $x = 2$ and $x = 3$, with no errors seen	M1 A1	[2]
	(ii)	State a suitable equation, e.g. $x = \sqrt{(x + (6/x))}$	B 1	
		Rearrange this as $x^3 - x^2 - 6 = 0$, or work vice versa	B 1	[2]
	(iii)	Use the iterative formula correctly at least once Obtain final answer 2.219	M1 A1	
		in the interval (2.2185, 2.2195)	A1	[3]

F	age 5	Mark Scheme Syllabus	s Pap	er	
		Cambridge International A Level – October/November 2015 9709	32	32	
5	(i)	State or imply that the derivative of e^{-2x} is $-2e^{-2x}$ Use product or quotient rule Obtain correct derivative in any form Use Pythagoras Justify the given form	B1 M1 A1 M1 A1	[5]	
	(ii)	Fully justify the given statement	B 1	[1]	
	(iii)	State answer $x = \frac{1}{4}\pi$	B1	[1]	
6	(i)	Substitute $x = -1$, equate to zero and simplify at least as far as $-8 + a - b - 1 = 0$ Substitute $x = -\frac{1}{2}$ and equate the result to 1	B1 M1		
		Obtain a correct equation in any form, e.g. $-1 + \frac{1}{4}a - \frac{1}{2}b - 1 = 1$	A1		
		Solve for a or for b	M1		
		Obtain $a = 6$ and $b = -3$	A1	[5]	
	(ii)	Commence division by $(x + 1)$ reaching a partial quotient $8x^2 + kx$	M1		
		Obtain quadratic factor $8x^2 - 2x - 1$	A1		
		Obtain factorisation $(x+1)(4x+1)(2x-1)$	A1	[3]	
		[The M1 is earned if inspection reaches an unknown factor $8x^2 + Bx + C$ and an equation in <i>B</i> and/or <i>C</i> , or an unknown factor $Ax^2 + Bx - 1$ and an equation in <i>A</i> and/or <i>B</i> .] [If linear factors are found by the factor theorem, give B1B1 for $(2x - 1)$ and $(4x + 1)$, and B1 for the complete factorisation.]	n I		
7	(i)	Use correct method to form a vector equation for <i>AB</i> Obtain a correct equation, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ or $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	M1 A1	[2]	
	(ii)	Using a direction vector for <i>AB</i> and a relevant point, obtain an equation for <i>m</i> in any form Obtain answer $2x - 2y + z = 4$, or equivalent	n M1 A1	[2]	
	(iii)	Express general point of AB in component form, e.g. $(1 + 2\lambda, 2 - 2\lambda, \lambda)$ or			
		$(3+2\mu, -2\mu, 1+\mu)$	B 1√		
		Substitute in equation of <i>m</i> and solve for λ or for μ	M1		
		Obtain final answer $\frac{1}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ for the position vector of <i>N</i> , from $\lambda = \frac{2}{3}$ or $\mu = -\frac{1}{3}$	A1		
		Carry out a correct method for finding CN	M1		
		Obtain the given answer $\sqrt{13}$ [The f.t. is on the direction vector for <i>AB</i> .]	A1	[5]	

Ρ	age 6	Mark Scheme Syllabus	Pap	er
	•	Cambridge International A Level – October/November 2015 9709	32	
8	Sepa Obta	arate variables and integrate one side ain term $ln(x + 2)$	B1 B1	
	Use Obta	$\cos 2A$ formula to express $\sin^2 2\theta$ in the form $a + b \cos 4\theta$ ain correct form $(1 - \cos 4\theta)/2$, or equivalent	M1 A1	
	Inte	grate and obtain term $\frac{1}{2}\theta - \frac{1}{8}\sin 4\theta$, or equivalent	A1√ [∧]	
	Eva cln	luate a constant, or use $\theta = 0$, $x = 0$ as limits in a solution containing terms $(x + 2)$, $d \sin(4\theta)$, $e\theta$	M1	
	Obta	ain correct solution in any form, e.g. $\ln(x+2) = \frac{1}{2}\theta - \frac{1}{8}\sin 4\theta + \ln 2$	A1	
	Use Obta	correct method for solving an equation of the form $\ln(x+2) = f$ ain answer $x = 0.962$	M1 A1	[9]
9	(i)	Show u in a relatively correct position Show u^* in a relatively correct position Show $u^* - u$ in a relatively correct position State or imply that <i>OABC</i> is a parallelogram	B1 B1 B1 B1	[4]
	(ii)	<i>EITHER</i> : Substitute for <i>u</i> and multiply numerator and denominator by $3 + i$, or equivalent Simplify the numerator to $8 + 6i$ or the denominator to 10 Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	M1 A1 A1	
		<i>OR</i> : Substitute for <i>u</i> , obtain two equations in <i>x</i> and <i>y</i> and solve for <i>x</i> or for <i>y</i> Obtain $x = \frac{4}{5}$ or $y = \frac{3}{5}$, or equivalent	M1 A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	A1	[3]
	(iii)	State or imply $\arg(u^*/u) = \tan^{-1}(\frac{3}{4})$	B 1	
		Substitute exact arguments in $\arg(u^*/u) = \arg u^* - \arg u$ Fully justify the given statement using exact values	M1 A1	[3]
10	(i)	Use the quotient rule Obtain correct derivative in any form Equate derivative to zero and solve for x Obtain answer $x = \sqrt[3]{2}$, or exact equivalent	M1 A1 M1 A1	[4]
	(ii)	State or imply indefinite integral is of the form $k \ln(1+x^3)$ State indefinite integral $\frac{1}{3}\ln(1+x^3)$	M1 A1	
		Substitute limits correctly in an integral of the form $k \ln(1 + x^3)$	M1	
		State or imply that the area of R is equal to $\frac{1}{3}\ln(1+p^3) - \frac{1}{3}\ln 2$, or equivalent	A1	
		Use a correct method for finding p from an equation of the form $\ln(1 + p^3) = a$		
		or $\ln((1 + p^3)/2) = b$ Obtain answer $p = 3.40$	M1 A1	[2]
		1		- L J