Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2015	9709	31

- 1 EITHER: State or imply non-modular inequality $(2x-5)^2 > (3(2x+1))^2$, or corresponding quadratic
 - equation, or pair of linear equations $(2x-5) = \pm 3(2x+1)$
 - Make reasonable solution attempt at a 3-term quadratic, or solve two linear equations for x M1
 Obtain critical values -2 and $\frac{1}{4}$ A1
 - State final answer $-2 < x < \frac{1}{4}$
 - *OR*: Obtain critical value x = -2 from a graphical method, or by inspection, or by solving a linear
 - equation or inequality B1
 - Obtain critical value $x = \frac{1}{4}$ similarly **B2**
 - State final answer $-2 < x < \frac{1}{4}$ B1 [4] [Do not condone \leq for <]
- 2 State or imply $1+u=u^2$ B1 Solve for u M1 Obtain root $\frac{1}{2}(1+\sqrt{5})$, or decimal in [1.61, 1.62] A1 Use correct method for finding x from a positive root M1 Obtain x = 0.438 and no other answer A1 [5]
- 3 Use $\tan(A \pm B)$ and obtain an equation in $\tan \theta$ and $\tan \phi$ Substitute throughout for $\tan \theta$ or for $\tan \phi$ Obtain $3 \tan^2 \theta \tan \theta 4 = 0$ or $3 \tan^2 \phi 5 \tan \phi 2 = 0$, or 3-term equivalent

 Solve a 3-term quadratic and find an angle

 Obtain answer $\theta = 135^\circ$, $\phi = 63.4^\circ$ Obtain answer $\theta = 53.1^\circ$, $\phi = 161.6^\circ$ A1

 [6]
 - [Treat answers in radians as a misread. Ignore answers outside the given interval.] [SR: Two correct values of θ (or ϕ) score A1; then A1 for both correct θ , ϕ pairs.]
- 4 (i) Evaluate, or consider the sign of, $x^3 x^2 6$ for two integer values of x, or equivalent Obtain the pair x = 2 and x = 3, with no errors seen A1 [2]
 - (ii) State a suitable equation, e.g. $x = \sqrt{(x + (6/x))}$ B1

 Rearrange this as $x^3 x^2 6 = 0$, or work *vice versa* B1 [2]
 - (iii) Use the iterative formula correctly at least once
 Obtain final answer 2.219
 Show sufficient iterates to 5 d.p. to justify 2.219 to 3 d.p., or show there is a sign change in the interval (2.2185, 2.2195)

 A1
 [3]

Ē	ugo (Cambridge International A Level – October/November 2015 9709	31	
5	(i)	State or imply that the derivative of e^{-2x} is $-2e^{-2x}$ Use product or quotient rule Obtain correct derivative in any form Use Pythagoras Justify the given form	B1 M1 A1 M1 A1	[5]
	(ii)	Fully justify the given statement	B1	[1]
	(iii)	State answer $x = \frac{1}{4}\pi$	B1	[1]
6	(i)	Substitute $x = -1$, equate to zero and simplify at least as far as $-8 + a - b - 1 = 0$ Substitute $x = -\frac{1}{2}$ and equate the result to 1 Obtain a correct equation in any form, e.g. $-1 + \frac{1}{4}a - \frac{1}{2}b - 1 = 1$ Solve for a or for b Obtain $a = 6$ and $b = -3$	B1 M1 A1 M1 A1	[5]
	(ii)	Commence division by $(x+1)$ reaching a partial quotient $8x^2 + kx$ Obtain quadratic factor $8x^2 - 2x - 1$ Obtain factorisation $(x+1)(4x+1)(2x-1)$ [The M1 is earned if inspection reaches an unknown factor $8x^2 + Bx + C$ and an equation in B and/or C , or an unknown factor $Ax^2 + Bx - 1$ and an equation in A and/or B .] [If linear factors are found by the factor theorem, give B1B1 for $(2x-1)$ and $(4x+1)$, and B1 for the complete factorisation.]	M1 A1 A1	[3]
7	(i)	Use correct method to form a vector equation for AB Obtain a correct equation, e.g. $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ or $\mathbf{r} = 3\mathbf{i} + \mathbf{k} + \mu(2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$	M1 A1	[2]
	(ii)	Using a direction vector for AB and a relevant point, obtain an equation for m in any form Obtain answer $2x - 2y + z = 4$, or equivalent	M1 A1	[2]
	(iii)	Express general point of AB in component form, e.g. $(1+2\lambda, 2-2\lambda, \lambda)$ or $(3+2\mu, -2\mu, 1+\mu)$ Substitute in equation of m and solve for λ or for μ Obtain final answer $\frac{7}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ for the position vector of N , from $\lambda = \frac{2}{3}$ or $\mu = -\frac{1}{3}$ Carry out a correct method for finding CN Obtain the given answer $\sqrt{13}$ [The f.t. is on the direction vector for AB .]	B1√ M1 A1 M1 A1	[5]

Mark Scheme

Syllabus

Paper

Page 5

		Cambridge International A Level – October/November 2015 9709	31	
8	_	arate variables and integrate one side ain term $ln(x + 2)$	B1 B1	
		$\cos 2A$ formula to express $\sin^2 2\theta$ in the form $a + b \cos 4\theta$ ain correct form $(1 - \cos 4\theta)/2$, or equivalent	M1 A1	
	Inte	grate and obtain term $\frac{1}{2}\theta - \frac{1}{8}\sin 4\theta$, or equivalent	A1 [↑]	
		luate a constant, or use $\theta = 0$, $x = 0$ as limits in a solution containing terms $(x + 2)$, $d\sin(4\theta)$, $e\theta$	M1	
	Obt	ain correct solution in any form, e.g. $\ln(x+2) = \frac{1}{2}\theta - \frac{1}{8}\sin 4\theta + \ln 2$	A1	
		correct method for solving an equation of the form $ln(x + 2) = f$	M1	
	Obt	ain answer $x = 0.962$	A1	[9]
9	(i)	Show u in a relatively correct position	B 1	
		Show u^* in a relatively correct position Show $u^* - u$ in a relatively correct position	B1 B1	
		State or imply that $OABC$ is a parallelogram	B1	[4]
	(ii)	EITHER: Substitute for u and multiply numerator and denominator by $3 + i$, or equivalent	M1	
		Simplify the numerator to 8 + 6i or the denominator to 10	A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent OR: Substitute for u , obtain two equations in x and y and solve for x or for y	A1 M1	
		Obtain $x = \frac{4}{5}$ or $y = \frac{3}{5}$, or equivalent	A1	
		Obtain final answer $\frac{4}{5} + \frac{3}{5}i$, or equivalent	A1	[3]
	(iii)	State or imply $\arg(u^*/u) = \tan^{-1}(\frac{3}{4})$	B1	
		Substitute exact arguments in $\arg(u^*/u) = \arg u^* - \arg u$	M1	
		Fully justify the given statement using exact values	A1	[3]
10	(i)	Use the quotient rule	M1	
		Obtain correct derivative in any form Equate derivative to zero and solve for <i>x</i>	A1 M1	
		Obtain answer $x = \sqrt[3]{2}$, or exact equivalent	A1	[4]
	(::)			
	(ii)	State or imply indefinite integral is of the form $k \ln(1+x^3)$	M1	
		State indefinite integral $\frac{1}{3}\ln(1+x^3)$	A1	
		Substitute limits correctly in an integral of the form $k \ln(1+x^3)$	M1	
		State or imply that the area of R is equal to $\frac{1}{3}\ln(1+p^3) - \frac{1}{3}\ln 2$, or equivalent	A1	
		Use a correct method for finding p from an equation of the form $ln(1+p^3) = a$		
		or $\ln((1+p^3)/2) = b$	M1	[2]
		Obtain answer $p = 3.40$	A1	[2]

Mark Scheme

Syllabus

Paper

Page 6